
Digital Signal Processing on the ColdFire Architecture
William Hohl, Joe Circello

Motorola, Inc.
High Performance Embedded Systems

6501 William Cannon Drive West
Austin, Texas 78735

Motorola, Inc.
Phoenix Design Center

432 North 44th St., Suite 200
Phoenix, Arizona 85008

ABSTRACT

The multiply-accumulate (MAC) unit is an addi-
tion to the ColdFire core that provides a new level
of support for signal processing algorithms. This
paper details the associated support functions
within the instruction set. Signal processing fea-
tures are discussed for potential applications in
embedded systems, and examples are presented
for implementing some useful algorithms.

1. INTRODUCTION

As consumer applications rely more heavily on
embedded controllers, component costs and area
constraints have forced manufacturers to consider
integrating more logic into fewer components.
The total cost of systems that use multiple-chip
solutions, such as a single-chip microcontroller
combined with a dedicated signal processor, can
be reduced by employing an embedded processor
that efficiently supports many digital signal pro-
cessing routines.

Motorola’s ColdFire architecture represents a
design approach targeted specifically for the
emerging class of advanced consumer electronics
applications. Within the domain of such cost-
driven embedded systems, several requirements
shaped the overall processor design. First, the
processor core is small enough to permit cost-
effective integration of on-chip memories and
other system modules and peripherals. Second, a
high-density instruction set can minimize mem-
ory requirements. In many designs, the cost of the
memory system exceeds the microprocessor cost,
so this factor can significantly impact overall sys-

tem cost. The ColdFire processor architecture
addresses these requirements through a variable-
length instruction set to maximize code density
implemented in a RISC-based approach to pro-
vide a very efficient silicon design.

ColdFire’s flexible system architecture and tools-
driven implementation philosophy allows for dif-
ferent configurations with the core. The addition
of a MAC unit to the processor is centered on the
notion of providing a limited set of DSP opera-
tions that are currently being used in embedded
code today, while supporting the current multiply
instructions in the ColdFire architecture. The
MAC unit provides functionality in three related
areas: signed and unsigned integer multiplies,
multiply-accumulate operations involving signed
and unsigned operands, and miscellaneous regis-
ter operations. Each of the three areas of support
is addressed in detail in the succeeding sections.

The MAC unit is an extension of the basic multi-
plier structure found in almost all microproces-
sors on the market today, whether implemented
in hardware or an iterative routine within the
architecture itself. The idea behind this extension
is to provide the ability to do operations native to
signal processing algorithms as quickly as possi-
ble while considering the limits of the applica-
tion. For example, small digital filters can
certainly tolerate some variance in the execution
time of the algorithm, while larger, more compli-
cated algorithms such as orthogonal transforms
(Fast Fourier, Discrete Cosine, Hartley, etc.) may
have more demanding speed and memory band-

width requirements.

Obviously, the 68000 architecture was not
designed for high-speed signal processing, and a
large DSP engine might be excessive in an
embedded environment. In striking a middle
ground between speed, size, and functionality,
the ColdFire MAC unit is optimized for a small
set of operations that involve multiplication and
cumulative additions and subtractions. Specifi-
cally, the multiplier array is optimized for single-
cycle 16x16 multiplies producing a 32-bit result,
with a possible accumulation cycle following.
This approach was selected since it is common in
a large portion of signal processing applications.
In addition, the ColdFire core architecture has
been extended to allow for an operand fetch in
parallel with a MAC, resulting in an overall
increase in performance for certain DSP opera-
tions.

2. ARCHITECTURE

The ColdFire processor implementation features
two independent, decoupled pipeline structures to
maximize performance while minimizing core
size [1].

The Instruction Fetch Pipeline (IFP) is a 2-stage
pipeline for prefetching instructions. The
prefetched instruction stream is then gated into
the 2-stage Operand Execution Pipeline (OEP),
which decodes the instruction, fetches the re-
quired operands, and then executes the actual
function. Since the IFP and OEP pipelines are de-
coupled by an instruction buffer which serves as a

FIFO queue, the IFP can prefetch instructions in
advance of their actual use by the OEP, thereby
minimizing time stalled waiting for instructions.

The MAC unit is located within the Operand Exe-
cution Pipeline and effectively appears as another
execute engine within this pipeline. The OEP is
implemented as a two-stage pipeline featuring a
traditional RISC datapath with a dual-read-ported
register file feeding multiple execute engines. In
this design, the pipeline stages have multiple
functions. The Decode & Select stage and the Op-
erand Cycle stage are both done in the DSOC cy-
cle. Address Generation and the Execute Cycle
are performed in the AGEX cycle.

The basic OEP contains two execute engines: an
ALU and a barrel shifter. Each execute engine is a
three-port device with two input operands produc-
ing an execute result.

The MAC unit implements a three-stage arith-
metic pipeline containing the multiply array fol-
lowed by adder logic. The first stage of the MAC
pipeline corresponds to the AGEX cycle of the
OEP and the third stage represents the final exe-
cute cycle, EX3.

Consider a simple register-to-register MAC oper-
ation. During the DSOC stage of the OEP, the in-
struction is decoded and the source operands are
fetched from the register file. During the AGEX
cycle, the source operands are sent to the MAC
unit along with information defining the exact op-
eration to be performed. The formation of the par-
tial products is completed in the AGEX stage and

OC EX

OC EX
mov.l &0, Racc

mac.w d0.u,d2.l

mac.w d0.l,d2.l

mac.w d1.l,d3.u

mac.w d1.l,d3.l

mov.l Racc,Dn

Fig. 1Pipeline timing example with MAC instructions

EX2

OC EX

OC EX

EX2

EX2

OC EX EX2

OC EX

EX3

EX3

EX3

EX3

the summation of these partial products started.
During the final EX3 cycle, the formation of the
product is completed and final summation involv-
ing the accumulator is performed. At the conclu-
sion of the EX3 cycle, the final result is loaded
into the accumulator. A timing diagram is shown
in Figure 1.

In addition to performing the MAC operations, the
integer multiply opcodes (MULS, MULU) are ex-
ecuted in the MAC unit. By executing these op-
codes in the MAC unit, the instruction execution
times are minimized and deterministic compared
to the 2-bit/cycle algorithm with early termination
normally used by the OEP.

3. GENERAL OPERATION

The MAC unit is designed to support the integer
multiply instructions and provide additional func-
tionality for multiply-accumulate operations. The
MAC module has been optimized for 16-bit mul-
tiplications in order to keep the area consumption
low. Two 16-bit operands produce a 32-bit result,
and both signed and unsigned operations are sup-
ported. Long operations are performed by reusing
the multiplier array at the expense of a small
amount of extra control logic. Again, the product
of two 32-bit operands is a 32-bit result.

The new instructions to the ColdFire ISA are
shown in Table 1. They provide for the multipli-
cation of two numbers, followed by the addition/
subtraction of this number to/from the value con-
tained in the accumulator. The product may be
optionally shifted left or right one bit before the
addition or subtraction takes place. Hardware
support for saturation arithmetic can be enabled
by setting the Overflow/Saturation Mode Control
bit in the status register. This can be used to mini-
mize software overhead when dealing with
potential overflow conditions using signed oper-
ands.

Since the multiplier array is implemented in a 3-
stage pipeline, the MAC instructions have an ef-

fective issue rate of one clock for word operations
and three clocks for long operations. All arith-

Table 1: MAC Instruction Summary

Instruction
Summary

Command
Mnemonic

Description

Multiply Signed MULS <ea>y,Dx Multiplies two
signed operands
yielding a signed
result

Multiply Unsigned MULU <ea>y,Dx Multiplies two
unsigned oper-
ands yielding an
unsigned result

Multiply
Accumulate

MAC Ry,RxSF
MSAC Ry,RxSF

Multiplies two
unsigned/signed
operands, then
adds/subtracts
the product to/
from the accumu-
lator

Multiply
Accumulate with
Load

MAC
Ry,RxSF,<ea>,Rw
MSAC
Ry,RxSF,<ea>,Rw

Multiplies two
unsigned/signed
operands, then
adds the product
to the accumulator
while loading a
register with the
memory operand

Load
Accumulator

MOV.L
{Ry,#imm},Racc

Loads the accu-
mulator with 32-
bit operand

Store
Accumulator

MOV.L Racc,Rx Writes the con-
tents of the accu-
mulator to a
register

Load MAC
Status Register

MOV.L
{Ry,#imm},MACSR

Writes a value to
the MAC status
register

Store MAC
Status Register

MOV.L MACSR,Rx Writes the con-
tents of the MAC
status register to a
register

Move MACSR
to CCR

MOV.L
MACSR,CCR

Writes the con-
tents of the MAC
status register to
processor’s CCR

Load
Mask Register

MOV.L
{Ry,#imm},Rmask

Loads mask regis-
ter with lower 16-
bits of operand

Store
Mask Register

MOV.L
Rmask,Rx

Writes mask regis-
ter to a register

metic operations use register-based input oper-
ands, and summed values are stored internally in
the accumulator. Thus, an additional move in-
struction is necessary to transfer the data to a gen-
eral-purpose register. One feature added to the
16x16 MAC instructions is the ability to choose
the upper or lower word of a register as the input
operand. As an example, in the case of a filtering
operation, this is useful if one data register is
loaded with thirty-two bits of input data and an-
other register is loaded with thirty-two bits of co-
efficient data. Two 16-bit MACs can be com-
pleted without having to fetch additional
operands between instructions by alternating the
word choice during the calculations.

One obstacle in obtaining high throughput rates
in DSP engines is moving large amounts of data
quickly. Large blocks of data are most efficiently
moved using the MOVEM opcode. Since this
instruction automatically generates line-sized
burst references, it is ideal for loading registers
quickly with input data or filter coefficients or for
storing output data. A new instruction combines
the ability to load an operand from memory into a
register at the same time that a MAC operation is
being performed. This makes certain DSP opera-
tions much more manageable, especially digital
filtering and convolution.

Three program-visible registers have been added
with the MAC unit: the 32-bit accumulator
(Racc), the status register (MACSR), and a mask
register (Rmask). The status register contains the
overflow/saturation mode control bits, the nega-
tive, zero, and overflow flags, as well as signed/
unsigned operation control bits. The mask regis-
ter allows an operand address to be effectively
constrained within a certain range defined by this
16-bit value. This feature minimizes the address-
ing support required for filtering, convolution, or
any routine that uses circular buffers or queues.

The MAC unit is capable of shifting a product be-
fore the result is added or subtracted to or from the
accumulator. Since there is the possibility of over-

flowing a 32-bit product, the following guidelines
are followed when performing MAC instructions.
For all left shifts, a zero is inserted next to the least
significant bit of the product. For unsigned opera-
tions, both word and long, a zero is shifted into the
product on right shifts. For signed, word-length
operations, the sign bit is shifted into the product
on right shifts, unless the product itself is zero. For
signed, long operations, the sign bit is shifted into
the product unless an overflow occurs or the prod-
uct itself is zero, in which case a zero is shifted in.

4. APPLICATIONS

This section details two examples of algorithms
that occur frequently in signal processing: a
transform and a simple digital filter. Additionally,
measured performance results from a disk servo
application are presented.

A. Discrete Cosine Transform
The first example demonstrates both matrix mul-
tiplication and the use of the multiply-accumulate
instruction with a two-dimensional 8x8 Discrete
Cosine Transform (DCT). The DCT has become
an attractive alternative to the Karhunen-Loève
transform for image compression because it com-
pares closely with respect to rate distortion crite-
ria, and because there are several efficient ways
to implement it.

A number of algorithms have been recognized
over the years, most notably those of Hou [2] and
Lee [3], which create higher-order DCT’s from
lower-order ones. In fact, it can be shown that the
algorithm for computing the Discrete Cosine
Transform resembles that of a Fast Fourier Trans-
form (with some postprocessing of the data).
However, for the purpose of illustration, a much
more direct method is used here, namely to use
the matrix formulation to multiply the input data
by the coefficients. Although this method will
work, it tends to be fairly slow, and in practice, a
faster implementation can be achieved by using
the signal flow graph [2] since the number of
multiplies is greatly reduced.

The two-dimensional DCT is given by:

wherex(m,n) is anNxN field, and
for , unity otherwise. If the DCT is carried
out with a matrix formulation, the routine is
based on the following equation:

where , , ,

, , and .

The DCT kernel is separable (like the FFT) so the
transform can be performed in two passes, first
along the rows and then along the columns. The
inverse DCT can be created by replacing the co-
efficients with those for an inverse transform. In
this implementation, a separate matrix transpose
routine is not necessary before the second pass,
since the operands are stored in memory in their
transposed position during the first pass. Note
that the transform here is not unitary, so the scal-
ing factor of only applies to the forward trans-
form.

The bulk of the DCT routine is comprised of
eight small loops, one of which is shown in Fig-
ure 2. Each loop calculates one vector of output
data. In this implementation, all coefficients and
the data samples are word-length operands. In-
stead of fetching two operands to multiply and
then accumulating the result, amovm instruction
loads four general-purpose registers with all eight
data samples, and anothermovm loads four more
registers with all eight coefficients. The MAC in-
structions are done in series, effectively one per
clock. Using the upper/lower word select bit, two
MAC operations are performed using the same
registers. The accumulator is then transferred to a

general-purpose register and moved out to mem-
ory.

A method similar to the one by Ford [4] and Srin-
ivasan et al. [5] was used to account for roundoff
errors and truncation. The coefficients themselves
are prescaled, and only the upper 16 bits of the
accumulator are saved (only the integer portion of
the intermediate products are kept).

To measure performance, the code was executed
on a cycle-accurate ColdFire simulation model
containing 512 bytes of instruction cache, 512
bytes of onboard RAM, and the ColdFire core
with the MAC unit. Both source and coefficient
data were stored in external memory, while inter-
mediate data was stored in the RAM. Depending
on the ColdFire part that is actually used, these
storage areas could easily be changed to improve
performance. For the configuration used here, the
DCT routine executed in approximately 6,300
cycles, or 189 microseconds at a frequency of 33
MHz.

B. Filters
Digital filters are found in a host of embedded
applications. Examples include speech and image
processing, and servo controllers in hard disk
drives. In general, they can be described by

where the outputy(i) is determined by past output

θ k l,() 2
N
----α k()α l() x m n,() πk 2m 1+()

2N
----------------------------- 

  π l 2n 1+()
2N

-------------------------- 
 coscos

n 0=

N 1–

∑
m 0=

N 1–

∑=

α k() 1 2()⁄=

k 0=

θ0
θ1
θ2
θ3
θ4
θ5
θ6
θ7

1 1 1 1 1 1 1 1

λ γ µ ν ν– µ– γ– λ–

β δ δ– β– β– δ– δ β
γ ν– λ– µ– µ λ ν γ–

α α– α– α α α– α– α
µ λ– ν γ γ– ν– λ µ–

δ β– β δ– δ– β β– δ
ν µ– γ λ– λ γ– µ ν–

x0
x1
x2
x3
x4
x5
x6
x7

=

β π
8
--- 

 sin= δ π
8
--- 

 cos= λ π
16
------ 

 cos=

γ 3π
16
------ 

 cos= µ 3π
16
------ 

 sin= ν π
16
------ 

 sin=

2
N

y i() a
k 1=

N 1–

∑= k()y i k–() b
k 0=

N 1–

∑ k()x i k–()+

movm.l (%a0),&0x0078 # load d3-d6
loop_one:

movm.l (%a1),&0x7800 # load a3-a6
mov.l &0x3000,%acc # rounding value
mac.w %d3:u,%a3:u
mac.w %d3:l,%a3:l
mac.w %d4:u,%a4:u
mac.w %d4:l,%a4:l
mac.w %d5:u,%a5:u
mac.w %d5:l,%a5:l
mac.w %d6:u,%a6:u
mac.w %d6:l,%a6:l
mov.l %acc,%d7
swap %d7
mov.w %d7,(%a2)
add.l doffset,%a1
lea 16(%a2),%a2
subq.l &1,%d2 # decrement loop
bne.b loop_one

Fig. 2 Assembly code that computes one vector of data

and/or input valuesx(i). This is the general form
of an infinite impulse response (IIR) filter. A fi-
nite impulse response (FIR) filter can be obtained
by setting the coefficientsa(k) to zero. In either
case, the operations involved in computing such a
filter are multiplies and a summing of products.

The design of a digital filter is based on the de-
sired frequency response, the type of filter struc-
ture used, and the type of processor or range of
precision used to implement it. Suppose that a
low-pass FIR filter is specified with a magnitude
response like the one shown in Figure 3. A large
pass band (fp) is required, from a normalized fre-
quency of 0 to 0.33, and the stop band (fs) is spec-
ified to begin at 0.37.

Using these criteria, the coefficientsh(k) are
found using the Parks-McClellan algorithm [6],
which is one of several ways in which to deter-
mine FIR filter coefficients. These coefficients
are quantized to 16 bits, which for our example,
are considered to be adequate. In general, though,
finite word-length effects need to be carefully
evaluated for shorter filters. There are a number of
readable texts that deal with unit-pulse response
coefficient calculation, including Williams[7],
Oppenheim and Schafer[8], and Ifeachor and
Jervis[9].

Scaling and overflow must be accounted for in
fixed-point operations. Since the output of the fil-
ter is given by

and the inputx(n) is assumed to have a magnitude
of at most unity, the coefficients can be scaled by
the l1 norm of h,

to avoid overflow completely. Table 2 shows the
scaled unit-pulse response samples for the filter.

If a less conservative scaling strategy is used
(such as scaling by thel2 norm), then saturation
operations can be used to minimize problems
caused by overflow. The MAC unit also provides
a saturation mode to handle overflow conditions.
If the OMC bit is set in the MAC status register,
the accumulator is set to the most positive or the
most negative value on any operation which over-
flows the 32-bit accumulator.

The next decision to make is the structure of the
filter. This decision is based on factors such as
ease of programming, sensitivity to coefficient

Table 2: l1 Scaled Coefficients

Coefficient Decimal Hex

h0, h20 0.008697 011D

h1, h19 0.026267 035D

h2, h18 -0.019490 FD82

h3, h17 0.007113 00E9

h4, h16 0.013134 01AE

h5, h15 -0.028302 FC62

h6, h14 0.021353 02BC

h7, h13 0.015199 01F2

h8, h12 -0.071330 F6DF

h9, h11 0.122376 0FAA

h10 0.333457 2AAF

y k() h m()x k m–()
m 0=

N 1–

∑=

h
1

h n()
n
∑=

0

0.1

0.2

0.3

0.4

0.5

0.6

0.00 0.25

fp fs
Fig. 3 Magnitude response of a 21-tap FIR filter

H e
j2πf()

errors, and regularity of the design. For this exam-
ple, a direct nonrecursive structure is implement-
ed, which would look something like the filter in
Figure 4. The boxes labeledz-1 represent unit
delays, which in an assembly language program
merely represent storage variables.

A short example of code is provided in the Appen-
dix for the FIR filter. The routine begins by load-
ing the mask register with the complement of the
sum of the address of the top of the queue and the
value 0x3F. In general, this type of filtering oper-
ation is optimally performed using a circular buff-
er, where the buffer length is rounded up to the
nearest power of two. In this example, the 21-tap
filter would be implemented using a 32-entry
buffer. By aligning the base of the circular buffer
on a 0-modulo-128 address (i.e., 0-modulo-4N,
where N is the number of 16-bit entries in the
queue), the mask register can easily be used to
constrain the address register pointing to the data
samples in the desired range with minimum over-
head. See Figure 5.

Once the starting addresses of the sample data and
the coefficients are stored in registers, all of the
coefficients are loaded into registers d0 through
d5 via themovm instruction. Since there are only
21 coefficients (all but one of which are doubled),
this is possible; larger filters will have to load
samples and coefficients as memory permits. The
routine then calls a subroutine which retrieves the
newest input sample. This subroutine is also
responsible for maintaining and checking the
address pointer that indicates the top of the queue.
After each pass through the filter, the top of the
queue is decremented until it reaches the lower

address boundary. Once there, it is reset to the bot-
tom of the stack on the next pass.

Once the pointer is set to the top of the array, pairs
of samples and coefficients are multiplied (similar
to the DCT routine), where several multiplica-
tions are performed with the same registers by
alternating the upper and lower word select bits.
By using a MAC instruction with a parallel move
and the post-increment addressing mode, the
effective address of each operation is AND’ed
with the contents of the mask registerafter being
incremented. The contents of the accumulator are
stored to memory and the routine branches to the
beginning of the code.

C. Disk Servo Code
In another application, the performance of a disk
servo controller was analyzed. These types of
applications are generally characterized by signif-
icant amounts of control functions (testing vari-
ables and conditional branches) along with signal
processing (low-pass filtering) and estimation cal-
culations for linear-state feedback control func-
tions.

In the initial version of this C language applica-

Fig. 4 Direct nonrecursive structure of an FIR filter

z-1 z-1

+ + +

x(n-2)x(n-1)

h1 h2h0

x(n)

y(n)

h0

h1

h6

h17

h18

h19

h20

h5

h3

h2

h4

x(n-3)

x(n-4)

x(n-5)

x(n-6)

x(n-7)

x(n-8)

x(n-9)

x(n-10)

x(n-11)

x(n-12)

x(n)

x(n-1)

x(n-2)

.

.

.

.

.

.

Fig. 5Arrays of input data samples and coefficients

base+0x00
0x02

0x04

0x06

0x08

0x0a

0x0c

0x0e
0x10
0x12

0x38
0x3a

0x3c
0x3e

tion, approximately 11% of the total executed
instructions were multiply operations. Next, the
source code was modified to reference assembly
language macros which defined the MAC
opcodes. For this optimization, the compiler out-
put was executed and the resulting performance
measured. Finally, the functions which performed
the filtering operation were optimized in assembly
language, and the performance was measured
again.

5. INSTRUCTION EXECUTION TIMES

The execution times for MAC operations are pro-
vided in Table 4. These numbers are presented in
terms ofC(r/w) , whereC is the processor core
clock cycles, r is the number of operand memory
reads, andw is the number of operand memory
writes. The timing assumptions are the same as
those for the ColdFire Family instruction set ar-
chitecture and can be found in [10].

6. CONCLUSIONS

As described in the previous sections, the MAC
unit extends the reach of the ColdFire family of
processors into areas traditionally reserved for
dedicated signal processors. The optimized per-
formance coupled with an approximate 10,000
gate implementation size make the MAC unit a
cost-effective module for those embedded appli-
cations requiring digital signal processing capa-
bilities.

The MAC unit is included as part of the ColdFire
processor core available in the FlexCore program

in the latter half of 1996. Additionally, the MAC
unit will be included in several new standard
ColdFire microprocessor products in the future.

7. REFERENCES

[1] J. Circello, “ColdFire: A Hot Processor Archi-
tecture,”Byte, Vol. 20, no. 5, pp. 173-174, May
1995.
[2] H.S. Hou, “A Fast Recursive Algorithm for
Computing the Discrete Cosine Transform,”IEEE
Transactions on ASSP, vol. ASSP-35, No. 10, Oct.
1987, pp. 1455-1461.
[3] B.G. Lee, “FCT - Fast Cosine Transform,”
Proceedings of 1984 Conference on ASSP, March
1984, pp. 28.A.3.1-28.A.3.4.
[4] W. Hohl, “8x8 Discrete Cosine Transform Im-
plementation on the TMS320C25 or the TMS-
320C30,”Digital Signal Processing Applications
with the TMS320 Family, vol. 3, pp. 169-190,
1990.
[5] S. Srinivasan et al., “Cosine Transform Block
Codec for Images Using the TMS32010,”Pro-
ceedings of IEEE ISCAS ‘86, vol. 1, pp. 299-302.
[6] T.W. Parks and C.S. Burrus,Digital Filter De-
sign, New York: John Wiley & Sons, 1987.
[7] C.S. Williams,Designing Digital Filters, New
Jersey: Prentice-Hall, 1986.
[8] A.W. Oppenheim and R.W. Schafer,Digital
Signal Processing, New Jersey: Prentice-Hall,
1975.
[9] E.C. Ifeachor and B.W. Jervis,Digital Signal
Processing, A Practical Approach, Addison-Wes-
ley, 1993.
[10] MCF5200 Family Programmer’s Reference
Manual, Motorola Incorporated, 1996.

William Hohl is a systems architect with Motor-
ola’s High Performance Embedded Systems Divi-
sion. He received the BSEE and MSEE degrees
from Texas A&M University, and his interests
include digital signal processing and computer
architecture. He previously designed the debug
unit for the ColdFire Family, and most recently
developed the MAC architecture.

Joe Circello is a microprocessor architect for Mo-

Table 3: Measured Disk Servo Performance

Application
Relative

Performance

Compiled C,
no MAC opcodes

1.00x

Compiled C,
MAC macros

1.45x

Compiled C,
MAC + Handtuning

1.69x

torola’s High Performance Embedded Systems
Division. With 21 years of experience in main-
frames to microprocessors, he is a veteran design-
er specializing in pipeline organization and
performance analysis. While at Motorola, he was
pipeline architect for the 68060 and has developed
the ColdFire architecture.

Table 4: Instruction Execution Timings

Opcode <ea>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

MULS.W <ea>y,Dx 4(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 7(1/0) 6(1/0) 4(0/0)

MULU.W <ea>y,Dx 4(0/0) 6(1/0) 6(1/0) 6(1/0) 6(1/0) 7(1/0) 6(1/0) 4(0/0)

MULS.L <ea>y,Dx 6(0/0) 8(1/0) 8(1/0) 8(1/0) 8(1/0) - - -

MULU.L <ea>y,Dx 6(0/0) 8(1/0) 8(1/0) 8(1/0) 8(1/0) - - -

MAC.W <ea>y,Rx 1(0/0) - - - - - - -

MAC.L <ea>y,Rx 3(0/0) - - - - - - -

MSAC.W <ea>y,Rx 1(0/0) - - - - - - -

MSAC.L <ea>y,Rx 3(0/0) - - - - - - -

MAC.W Ry,Rx-
SF,<ea>,Rw - 2(1/0) 2(1/0) 2(1/0) 2(1/0)* - - -

MAC.L Ry,Rx-
SF,<ea>,Rw - 4(1/0) 4(1/0) 4(1/0) 4(1/0)* - - -

MSAC.W Ry,Rx-
SF,<ea>,Rw - 2(1/0) 2(1/0) 2(1/0) 2(1/0)* - - -

MSAC.L Ry,Rx-
SF,<ea>,Rw - 4(1/0) 4(1/0) 4(1/0) 4(1/0)* - - -

MOV.L <ea>,ACC 1(0/0) - - - - - - 1(0/0)

MOV.L <ea>,MACSR 1(0/0) - - - - - - 1(0/0)

MOV.L <ea>,MASK 1(0/0) - - - - - - 1(0/0)

MOV.L ACC,<ea> 3(0/0) - - - - - - -

MOV.L MACSR,<ea> 3(0/0) - - - - - - -

MOV.L MASK,<ea> 3(0/0) - - - - - - -

Appendix

Example source code for the FIR filter

main:
clr.l %d0 # zero the data register
clr.l %d1 # zero the data register
clr.l %d2 # zero the data register
clr.l %d3 # zero the data register
clr.l %d4 # zero the data register
clr.l %d5 # zero the data register
clr.l %d6 # zero the data register
clr.l %d7 # zero the data register
lea queue,%a0 # pointer to sample queue
movm.l &0x00ff,(%a0) # initialize the sample queue
lea 32(%a0),%a0 # adjust queue pointer
movm.l &0x00ff,(%a0) # finish initializing the sample queue
lea queue+0x3e,%a0 # address of last entry in queue
mov.l %a0,%d0
not.l %d0 # create value for mask register
mov.l %d0,%mask # initialize MAC mask register
lea coeff,%a1 # base of coefficient table
movm.l (%a1),&0x00fc # load coefficients into d2-d7

L%1:
bsr.b do_filter # perform 21-tap FIR filter
bra.b L%1 # loop continously

do_filter:
mov.l &0,%acc # initialize accumulator
bsr.b get_sample # retrieve sample x(n)

get_sample argument:
queue pointer in %a0
get_sample returns:
x(n), x(n-1) in %d0
pointer to x(n-2) in %a0

mac.w %d2:u,%d0.u,(%a0)+&,%d1
h(0) * x(n) {x(n- 2), x(n- 3)} -> d1

mac.w %d2:l,%d0.l # h(1) * x(n- 1)
mac.w %d3:u,%d1.u,(%a0)+&,%d0

h(2) * x(n- 2) {x(n- 4), x(n- 5)} -> d0
mac.w %d3:l,%d1.l # h(3) * x(n- 3)
mac.w %d4:u,%d0.u,(%a0)+&,%d1

h(4) * x(n- 4) {x(n- 6), x(n- 7)} -> d1
mac.w %d4:l,%d0.l # h(5) * x(n- 5)

mac.w %d5:u,%d1.u,(%a0)+&,%d0
h(6) * x(n- 6) {x(n- 8), x(n- 9)} -> d0

mac.w %d5:l,%d1.l # h(7) * x(n- 7)
mac.w %d6:u,%d0.u,(%a0)+&,%d1

h(8) * x(n- 8) {x(n-10), x(n-11)} -> d1
mac.w %d6:l,%d0.l # h(9) * x(n- 9)
mac.w %d7:u,%d1.u,(%a0)+&,%d0

h(10) * x(n-10) {x(n-12), x(n-13)} -> d0
mac.w %d6:l,%d1.l # h(11) * x(n-11)
mac.w %d6:u,%d0.u,(%a0)+&,%d1

h(12) * x(n-12) {x(n-14), x(n-15)} -> d1
mac.w %d5:l,%d0.l # h(13) * x(n-13)
mac.w %d5:u,%d1.u,(%a0)+&,%d0

h(14) * x(n-14) {x(n-16), x(n-17)} -> d0
mac.w %d4:l,%d1.l # h(15) * x(n-15)
mac.w %d4:u,%d0.u,(%a0)+&,%d1

h(16) * x(n-16) {x(n-18), x(n-19)} -> d1
mac.w %d3:l,%d0.l # h(17) * x(n-17)
mac.w %d3:u,%d1.u,(%a0)+&,%d0

h(18) * x(n-18) {x(n-20)} -> d0
mac.w %d2:l,%d1.l # h(19) * x(n-19)
mac.w %d2:u,%d0.u # h(20) * x(n-20)
mov.l %acc,%d0 # move accumulator to general register
swap %d0 # align most significant 16 bits of acc
mov.w %d0,<ea> # store y(n)
rts

get_sample:
 .
 .
 .

rts

data
align 104

coeff:
long 0x011d035d # h(0)/h(20), h(1)/h(19)
long 0xfd8200e9 # h(2)/h(18), h(3)/h(17)
long 0x01aefc62 # h(4)/h(16), h(5)/h(15)
long 0x02bc01f2 # h(6)/h(14), h(7)/h(13)
long 0xf6df0faa # h(8)/h(12), h(9)/h(11)
long 0x2aaf2aaf # h(10)

queue must be aligned on 0-mod-128 address
queue: space 64

