
 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-1

 

SECTION 14
DEBUG SUPPORT

 

This section details the hardware debug support functions within the ColdFire 5200 Family 
of processors.

The general topic of debug support is divided into three separate areas: 

1. Real-Time Trace Support

2. Background Debug Mode (BDM)

3. Real-Time Debug Support

Each area is addressed in detail in the following subsections.

The logic required to support these three areas is contained in a debug module, which is 
shown in the system block diagram in Figure 14-1. 

 

14.1  REAL-TIME TRACE

 

In the area of debug functions, one fundamental requirement is support for real-time trace 
functionality (i.e., definition of the dynamic execution path). The ColdFire solution is to 
include a parallel output port providing encoded processor status and data to an external 
development system. This port is partitioned into two 4-bit nibbles: one nibble allows the 
processor to transmit information concerning the execution status of the core (processor 
status

 

,

 

 PST[3:0]), while the other nibble allows data to be displayed (debug data

 

, 

 

DDATA[3:0]).

 

Figure 14-1. Processor/Debug Module Interface

COLDFIRE CPU 

DEBUG

MODULE

BDM PORT

DDATA, PSTDSCLK, DSI, DSO

INTERNAL BUSES
CORE

TRACE PORT



 

Debug Support

 

14-2

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

The processor status timing is synchronous with the processor clock (CLK) and the status 
may not be related to the current bus transfer. Table 14-1 below shows the encodings of 
these signals.

The processor status outputs can be used with an external image of the program to 
completely track the dynamic execution path of the machine. The tracking of this dynamic 
path is complicated by any change-of-flow operation. Within the ColdFire instruction set 
architecture, most branch instructions are implemented using PC-relative addressing. 
Accordingly, the external program image can determine branch target addresses. 
Additionally, there are a number of instructions that use some type of variant addressing, 
i.e., the calculation of the target instruction address is not PC-relative or absolute but 
involves the use of a program-visible register.

The simplest example of a branch instruction using a variant addressing mode is the 
compiled code for a C language

 

 case 

 

statement. Typically, the evaluation of this statement 
uses the variable of an expression as an index into a table of offsets, where each offset 
points to a unique case within the structure. For these types of change-of-flow operations, 
the ColdFire processor uses the debug pins to output a sequence of information. 

1. Identify a taken branch has been executed using the PST[3:0]=$5.

2. Using the PST

 

 

 

pins, signal the target address is to be displayed on the DDATA pins. 
The encoding identifies the number of bytes that are displayed and is optional

 

.

 

3. The new target address is optionally available on subsequent cycles using the nibble-
wide DDATA port. The number of bytes of the target address displayed on this port is 
a configurable parameter (2, 3, or 4 bytes).

 

Table 14-1. Processor PST Definition

 

PST[3:0] DEFINITION

 

0000 Continue execution

0001 Begin execution of an instruction

0010 Reserved

0011 Entry into user-mode

0100 Begin execution of PULSE or WDDATA instruction

0101 Begin execution of taken branch

0110 Reserved

0111 Begin execution of RTE instruction

1000 Begin 1-byte transfer on DData

1001 Begin 2-byte transfer on DData

1010 Begin 3-byte transfer on DData

1011 Begin 4-byte transfer on DData

1100   Exception processing

1101   Emulator-mode entry exception processing

1110   Processor is stopped, waiting for interrupt

1111   Processor is halted 

 

  

 

These encodings are asserted for multiple cycles.



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-3

 

The nibble-wide DDATA port includes two 32-bit storage elements for capturing the CPU 
core bus information. These two elements effectively form a FIFO buffer connecting the core 
bus to the external development system. The FIFO buffer captures variant branch target 
addresses along with certain operand read/write data for eventual display on the DDATA

 

 

 

output port. The execution speed of the ColdFire processor is affected only when both 
storage elements contain valid data

 

 

 

waiting to be dumped onto the DDATA port. In this case, 
the processor core stalls until one FIFO entry is available. In all other cases, data output on 
the DDATA port does not impact execution speed.

From the processor core perspective, the PST outputs signal the

 

 

 

first AGEX cycle

 

 

 

of an 
instructionÕs execution. Most single-cycle instructions begin and complete their execution 
within a given machine cycle. 

Because the processor status (PST[3:0]) values of $C, $D, $E, and $F define a multicycle 
mode or a special operation, the

 

 

 

PST outputs are driven with these values until the mode is 
exited or the operation completed. All the remaining fields specify information that is updated 
each machine cycle.

The status values of $8, $9, $A, and $B qualify the contents of the DDATA

 

 

 

output bus. These 
encodings are driven onto the PST port one machine cycle before the actual data is 
displayed on DDATA.

Figure14-3 shows the execution of an indirect JMP

 

 

 

instruction with the lower 16 bits of the 
target address being displayed on the DDATA output. In this diagram, the indirect JMP 
branches to address Òtarget.Ó The processor internally forms the PST marker ($9) one cycle 
before the address begins to appear on the DDATA

 

 

 

port. The target address is displayed on 
DDATA for four consecutive clocks, starting with the least-significant nibble. The processor 
continues execution, unaffected by the DDATA

 

 

 

bus activity. 

 

Figure 14-2. Pipeline Timing Example (Debug Output)

 

The ColdFire instruction set architecture (ISA) includes a PULSE opcode. This opcode 
generates a unique PST encoding when executed (PST = $4). This instruction can define 
logic analyzer triggers for debug and/or performance analysis. 

 

Last

 

DSOC AGEX

 

JMP (A0)

 

DSOC AGEX

 

Target

 

IAG IC DSOC AGEX

 

Target + $4

 

IAG IC DSOC AGEX

 

Internal PST

 

$5 $9 $0 TARGET

 

Internal DDATA

 

$0 $0 3:0 7:4 11:8 15:12

 

PST Pins

 

$5 $9 $0 TARGET

 

DDATA Pins

 

$0 $0 3:0 7:4 11:8 15:12



 

Debug Support

 

14-4

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

Additionally, a WDDATA opcode is supported that lets the processor core write any operand 
(byte, word, longword) directly to the DDATA port, independent of any Debug module 
configuration. This opcode also generates the special PST = $4 encoding when executed.

 

14.2 BACKGROUND-DEBUG MODE (BDM)

 

ColdFire 52xx processors support a modified version of the Background-Debug mode 
(BDM) functionality found on MotorolaÕs CPU32 Family of parts. BDM implements a low-
level system debugger in the microprocessor hardware. Communication with the 
development system is handled via a dedicated, high-speed serial command interface 
(BDM port).

Unless noted otherwise, the BDM functionality provided by ColdFire 52xx processors is a 
proper subset of the CPU32 functionality. The main differences include the following:

¥ ColdFire implements the BDM controller in a dedicated hardware module. Although 
some BDM operations do require the CPU to be halted (e.g., CPU register accesses), 
other BDM commands such as memory accesses can be executed while the processor 
is running.

¥ DSCLK, DSI,

 

 

 

and DSO

 

 

 

are treated as synchronous signals, where the inputs (DSCLK 
and DSI) must meet the required input setup and hold timings, and the output (DSO) is 
specified as a delay relative to the rising edge of the processor clock.

¥ On CPU32 parts, DSO could signal hardware that a serial transfer can start. ColdFire 
clocking schemes restrict the use of this bit. Because DSO changes only when DSCLK 
is high, DSO cannot be used to indicate the start of a serial transfer. The development 
system should use either a free-running DSCLK or count the number of clocks in any 
given transfer.

¥ The Read/Write System Register commands (RSREG/WSREG) have been replaced 
by Read/Write Control Register commands (RCREG/WCREG). These commands use 
the register coding scheme from the MOVEC instruction.

¥ Read/Write Debug Module Register commands (RDMREG/WDMREG) have been add-
ed to support Debug module register accesses.

¥ CALL and RST commands are not supported.

¥ Illegal command responses can be returned using the FILL and DUMP commands.

¥ For any command performing a byte-sized memory read operation, the upper 8 bits of 
the response data are undefined. The referenced data is returned in the lower 8 bits of 
the response.

¥ The debug module forces alignment for memory-referencing operations: long accesses 
are forced to a 0-modulo-4 address; word accesses are forced to a 0-modulo-2 
address. An address error response can no longer be returned.

 

14.2.1 CPU Halt

 

Although some BDM operations can occur in parallel with CPU operation, unrestricted BDM 
operation requires the CPU to be halted. A number of sources can cause the CPU to halt, 
including the following (as shown in order of priority):



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-5

 

1. The occurrence of the catastrophic fault-on-fault condition automatically halts the 
processor. The halt status is posted on the PST port ($F).

2. The occurrence of a hardware breakpoint (reference subsection 

 

Section 14.3 Real-
Time Debug Support

 

) can be configured to generate a pending halt condition in a 
manner similar to the assertion of the BKPT signal. In some cases, the occurrence of 
this type of breakpoint halts the processor in an imprecise manner. Once the hardware 
breakpoint is asserted, the processor halts at the next sample point. See 

 

Section 
14.3.2 Theory of Operation 

 

for more detail.

3. The execution of the HALT

 

 

 

(also known as BGND on the 683xx devices) instruction 
immediately suspends execution and posts the halt status ($F) on the PST

 

 

 

outputs. 
By default, this is a supervisor instruction and attempted execution while in user mode 
generates a privilege-violation exception. A User Halt Enable (UHE) control bit is 
provided in the Configuration/Status Register (CSR) to allow execution of HALT in 
user mode.

4. The assertion of the BKPT

 

 

 

input pin is treated as an pseudo-interrupt, i.e., the halt 
condition is made pending until the processor core samples for halts/interrupts. The 
processor samples for these conditions once during the execution of each instruction. 
If there is a pending halt condition at the sample time, the processor suspends 
execution and enters the halted state. The halt status ($F) is reflected in the PST 
outputs. 

The halt source is indicated in CSR[27:24]; for simultaneous halt conditions, the highest 
priority source is indicated.

There are two special cases to be considered that involve the assertion of the BKPT pin.

After RSTI is negated, the processor waits for 16 clock cycles before beginning reset 
exception processing. If the BKPT input pin is asserted within the first eight cycles after RSTI 
is negated, the processor will enter the halt state, signaling that status on the PST outputs 
($F). While in this state, all resources accessible via the Debug module can be referenced. 
Once the system initialization is complete, the processor response to a BDM GO command 
depends on the set of BDM commands performed while Òbreakpointed.Ó Specifically, if the 
processorÕs PC register was loaded, the GO command causes the processor to exit the halt 
state and pass control to the instruction address contained in the PC. In this case, the 
normal reset exception processing is bypassed. Conversely, if the PC register was not 
loaded, the GO BDM command causes the processor to exit the halt state and continue with 
reset exception processing.

ColdFire 52xx processors also handle a special case with the assertion of BKPT while the 
processor is stopped by execution of the STOP instruction. For this case when the BKPT is 
asserted, the processor exits the stopped mode and enters the halted state. Once halted, 
the standard BDM commands may be exercised. When the processor is restarted, it 
continues with the execution of the next sequential instruction, i.e., the instruction following 
the STOP opcode.

The debug module Configuration/Status Register (CSR) maintains status defining the 
condition that caused the CPU to halt.



 

Debug Support

 

14-6

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

14.2.2 BDM Serial Interface

 

Once the CPU is halted and the halt status reflected on the PST outputs (PST[3:0]=$F), the 
development system can send unrestricted commands to the Debug module. The Debug 
module implements a synchronous protocol using a three-pin interface: development serial 
clock (DSCLK), development serial input (DSI), and

 

 

 

development serial output

 

 

 

(DSO). The 
development system serves as the serial communication channel master and is responsible 
for generation of the clock (DSCLK). The operating range of the serial channel is DC to one-
half of the processor frequency. The channel uses a full duplex mode, where data is 
transmitted and received simultaneously by both master and slave devices.

Both DSCLK and DSI are synchronous inputs and must meet input setup and hold times 
with respect to CLK. DSCLK essentially acts as a pseudo Òclock enableÓ and is sampled on 
the rising edge of CLK. If the setup time of DSCLK is met, then the internal logic transitions 
on the rising edge of CLK, and DSI is sampled on the same CLK rising edge. The DSO 
output is specified as a delay from the DSCLK-enabled CLK rising edge. All events in the 
Debug moduleÕs serial state machine are based on the rising edge of the microprocessor 
clock. Refer to the 

 

Electrical Characteristics 

 

section of this manual

 

.

Figure 14-3. BDM Signal Sampling

 

The basic packet of information is a 17-bit word (16 data bits plus a status/control bit), as 
shown here.

Status/Control
The status/control bit indicates the status of CPU-generated messages (always single word 
with the data field encoded as listed in Table 14-2). Command and data transfers initiated 

 

16 15 0

S/C DATA FIELD [15:0]

CLK

DSCLK

DSI

DSO



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-7

 

by the development system should clear bit 16. The current implementation ignores this bit; 
however, Motorola has reserved this bit for future enhancements. 

Data Field
The data field contains the message data to be communicated between the development 
system and the Debug module.

 

14.2.3 BDM Command Set

 

ColdFire 52xx processors support a subset of BDM instructions from the current 683xx parts 
as well as extensions to provide access to new hardware features.

 

14.2.3.1 BDM COMMAND SET SUMMARY. 

 

The BDM command set is summarized in 
Table 14-3. Subsequent paragraphs contain detailed descriptions of each command. 

 

Table 14-2. CPU-Generated Message Encoding

 

S/C BIT DATA MESSAGE TYPE

 

0 xxxx Valid data transfer
0 $FFFF Command complete; status OK
1 $0000 Not ready with response; come again
1 $0001 TEA-terminated bus error cycle; data invalid
1 $FFFF Illegal command

 

Table 14-3. BDM Command Summary 

 

COMMAND MNEMONIC DESCRIPTION CPU IMPACT

 

1

 

Read A/D Register RAREG/RDREG Read the selected address or data register and return the result
via the serial BDM interface Halted

Write A/D Register WAREG/WDREG The data operand is written to the specified address or data 
register via the serial BDM interface Halted

Read Memory Location READ Read the sized data at the memory location specified by the
longword address

Cycle
Steal

Write Memory Location WRITE Write the operand data to the memory location specified by the 
longword address

Cycle
Steal

Dump Memory Block DUMP

Used in conjunction with the READ command to dump large
blocks of memory. An initial READ is executed to set up the
starting address of the block and to retrieve the first result.
Subsequent operands are retrieved with the DUMP command.

Cycle
Steal

Fill Memory Block FILL

Used in conjunction with the WRITE command to fill large
blocks of memory. An initial WRITE is executed to set up the
starting address of the block and to supply the first operand.
Subsequent operands are written with the FILL command.

Cycle
Steal

Resume Execution GO The pipeline is flushed and refilled before resuming instruction
execution at the current PC Halted

No Operation NOP NOP performs no operation and may be used as a null 
command Parallel

Read Control Register RCREG Read the system control register Halted
Write Control Register WCREG Write the operand data to the system control register Halted

Read Debug Module Register RDMREG Read the Debug module register Parallel
Write Debug 

Module Register WDMREG Write the operand data to the Debug module register Halted



 

Debug Support

 

14-8

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

14.2.3.2 COLDFIRE BDM COMMANDS. 

 

All ColdFire Family BDM commands include a 16-
bit operation word followed by an optional set of one or more extension words. 

Operation Field
The operation field specifies the command.

R/W Field
The R/W field specifies the direction of operand transfer. When the bit is set, the transfer is 
from the CPU to the development system. When the bit is cleared, data is written to the CPU 
or to memory from the development system.

Operand Size
For sized operations, this field specifies the operand data size. All addresses are expressed 
as 32-bit absolute values. The size field is encoded as listed in Table 14-4.

Address / Data (A/D) Field
The A/D field is used in commands that operate on address and data registers in the 
processor. It determines whether the register field specifies a data or address register. A one 
indicates an address register; zero, a data register.

Register Field
In commands that operate on processor registers, this field specifies which register is 
selected. The field value contains the register number.

 

 

 

NOTE:

 

1.

 

General

 

 command effect and/or requirements on CPU operation:

Halted - The CPU must be halted to perform this command

Steal - Command generates a bus cycle which is interleaved with CPU accesses

Parallel - Command is executed in parallel with CPU activity

Refer to command summaries for detailed operation descriptions.

 

15 10 9 8 7 6 5 4 3 2 0

OPERATION 0 R/W OP SIZE 0 0 A/D REGISTER

EXTENSION WORD(S)

 

 

Table 14-4. BDM Size Field Encoding

 

ENCODING OPERAND SIZE

 

00 Byte
01 Word
10 Long
11 Reserved

 

Table 14-3. BDM Command Summary (Continued)

 

COMMAND MNEMONIC DESCRIPTION CPU IMPACT

 

1



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-9

 

Extension Word(s) (as required):
Certain commands require extension words for addresses and/or immediate data. 
Addresses require two extension words because only absolute long addressing is permitted. 
Immediate data can be either one or two words in length; byte and word data each require 
a single extension word; longword data requires two words. Both operands and addresses 
are transferred by most significant word first. In the following descriptions of the BDM 
command set, the optional set of extension words are defined as the ÒOperand Data.Ó

 

14.2.3.3  Command Sequence Diagram. 

 

A command sequence diagram (see Figure 
14-4) illustrates the serial bus traffic for each command. Each bubble in the diagram 
represents a single 17-bit transfer across the bus. The top half in each diagram corresponds 
to the data transmitted by the development system to the debug module; the bottom half 
corresponds to the data returned by the debug module in response to the development 
system commands. Command and result transactions are overlapped to minimize latency. 

The cycle in which the command is issued contains the development system command 
mnemonic (in this example, Òread memory locationÓ). During the same cycle, the debug 
module responds with either the lowest order results of the previous command or with a 
command complete status (if no results were required).

During the second cycle, the development system supplies the high-order 16 bits of the 
memory address. The debug module returns a Ònot readyÓ response($10000) unless the 
received command was decoded as unimplemented, in which case the response data is the 
illegal command ($1FFFF) encoding. If an illegal command response occurs, the 
development system should retransmit the command.

 

NOTE

 

The Ònot readyÓ response is ignored unless a memory bus cycle
is in progress. Otherwise, the debug module can accept a new
serial transfer after eight system clock periods.

In the third cycle, the development system supplies the low-order 16 bits of a memory 
address. The debug module always returns the Ònot readyÓ response in this cycle. At the 
completion of the third cycle, the debug module initiates a memory read operation. Any 
serial transfers that begin while the memory access is in progress return the Ònot readyÓ 
response.

Results are returned in the two serial transfer cycles following the completion of memory 
access. The data transmitted to the debug module during the final transfer is the opcode for 
the following command. Should a memory access generate a bus error, an error status 
($10001) is returned in place of the result data.



 

Debug Support

 

14-10

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

Figure 14-4. Command Sequence Diagram 

14.2.3.4  Command Set Descriptions. 

 

The BDM command set is summarized in Table
14-3. 

 

Note 

 

All the accompanying valid BDM results are defined with the
most significant bit of the 17-bit response (S/C) as 0. Invalid
command responses (Not Ready; TEA-terminated bus cycle; Il-
legal Command) return a 1 in the most significant bit of the 17-
bit response (S/C).

Motorola reserves unassigned command opcodes for future expansion. All unused com-
mand formats within any revision level will perform a NOP and return the ILLEGAL com-
mand response.

 COMMANDS TRANSMITTED TO THE DEBUG MODULE

COMMAND CODE TRANSMITTED DURING THIS CYCLE

HIGH-ORDER 16 BITS OF MEMORY ADDRESS

LOW-ORDER 16 BITS OF MEMORY ADDRESS

SEQUENCE TAKEN IF
OPERATION HAS NOT
COMPLETED

DATA UNUSED FROM
THIS TRANSFER

SEQUENCE TAKEN IF
ILLEGAL COMMAND
IS RECEIVED BY DEBUG MODULE

RESULTS FROM PREVIOUS COMMAND

 RESPONSES FROM THE DEBUG MODULE

NONSERIAL-RELATED ACTIVITY

MS ADDR
"NOT READY"

XXX
"ILLEGAL"

LS ADDR
"NOT READY"

NEXT CMD
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXXXX

XXX
BERR

MS RESULT
NEXT CMD
LS RESULT

READ
MEMORY
LOCATION

NEXT
COMMAND

CODE

SEQUENCE TAKEN IF BUS�
 ERROR OCCURS ON
MEMORY ACCESS

HIGH- AND LOW-ORDER
16 BITS OF RESULT

XXX



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-11

 

14.2.3.4.1 Read A/D Register (RAREG/RDREG). 

 

Read the selected address or data 
register and return the 32-bit result. A bus error response is returned if the CPU core is not 
halted.

Formats:

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected register are returned as a longword value. The data is returned
most significant word first.

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $1 $8 A/D REGISTER

 

 RAREG/RDREG Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

 

 RAREG/RDREG Result

XXX
MS RESULT

NEXT CMD
LS RESULT

RAREG/RDREG
???

XXX
BERR

NEXT CMD
"NOT READY



 

Debug Support

 

14-12

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

14.2.3.4.2 Write A/D Register (WAREG/WDREG). 

 

The operand (longword) data is written 
to the specified address or data register. All 32 register bits are altered by the write. A bus 
error response is returned if the CPU core is not halted.

Command Formats:

Command Sequence:

Operand Data:
Longword data is written into the specified address or data register. The data is supplied
most significant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $0 $8 A/D REGISTER

DATA [31:16]

DATA [15:0]

 

  WAREG/WDREG Command

MS DATA
"NOT READY"

XXX

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDREG/WAREG
???

NEXT CMD
"CMD COMPLETE"

BERR



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-13

 

14.2.3.4.3 Read Memory Location (READ). 

 

Read the operand data from the memory 
location specified by the longword address. The address space is defined by the contents 
of the low-order 5 bits {TT, TM} of the address attribute register (AATR). The hardware 
forces the low-order bits of the address to zeros for word and longword accesses to ensure 
that operands are always accessed on natural boundaries: words on 0-modulo-2 addresses, 
longwords on 0-modulo-4 addresses. 

Formats:

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $0 $0

ADDRESS [31:16]

ADDRESS [15:0]

 

 Byte READ Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

 

 Byte READ Result

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $4 $0

ADDRESS [31:16]

ADDRESS [15:0]

 

  Word READ Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

 

 Word READ Result

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $9 $8 $0

ADDRESS [31:16]

ADDRESS [15:0]

 

 Long READ Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

 

 Long READ Result



 

Debug Support

 

14-14

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

Command Sequence:

Operand Data:
The single operand is the longword address of the requested memory location.

Result Data:
The requested data is returned as either a word or longword. Byte data is returned in the
least significant byte of a word result, with the upper byte undefined. Word results return 16
bits of significant data; longword results return 32 bits.

A successful read operation returns data bit 16 cleared. If a bus error is encountered, the
returned data is $10001.

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   RESULT
NEXT CMD

READ
MEMORY
LOCATION

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

READ (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

  MS RESULT
XXX

READ
MEMORY
LOCATION

NEXT CMD
LS RESULT



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-15

 

14.2.3.4.4 Write Memory Location (WRITE). 

 

Write the operand data to the memory 
location specified by the longword address. The address space is defined by the contents 
of the low-order 5 bits {TT, TM} of the address attribute register (AATR). The hardware 
forces the low-order bits of the address to zeros for word and longword accesses to ensure 
that operands are always accessed on natural boundaries: words on 0-modulo-2 addresses, 
longwords on 0-modulo-4 addresses. 

Formats: 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $0 $0

ADDRESS [31:16]

ADDRESS [15:0]

X X X X X X X X DATA [7:0]

 

 Byte WRITE Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $4 $0

ADDRESS [31:16]

ADDRESS [15:0]

DATA [15:0]

 

 Word WRITE Command

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $8 $8 $0

ADDRESS [31:16]

ADDRESS [15:0]

DATA [31:16]

DATA [15:0]

 

  Long WRITE Command



 

Debug Support

 

14-16

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

Command Sequence:

Operand Data:
Two operands are required for this instruction. The first operand is a longword absolute ad-
dress that specifies a location to which the operand data is to be written. The second oper-
and is the data. Byte data is transmitted as a 16-bit word, justified in the least significant byte;
16- and 32-bit operands are transmitted as 16 and 32 bits, respectively.

Result Data:
Successful write operations return a status of $0FFFF. A bus error on the write cycle is in-
dicated by the assertion of bit 16 in the status message and by a data pattern of $0001.

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (B/W)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   "CMD COMPLETE
NEXT CMD

WRITE
MEMORY
LOCATION

DATA
"NOT READY"

MS ADDR
"NOT READY"

LS ADDR
"NOT READY"

WRITE (LONG)
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   "CMD COMPLETE
NEXT CMD

WRITE
MEMORY
LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"



 

Debug Support

 

MOTOROLA

 

MCF5206 USERÕS MANUAL Rev 1.0

 

14-17

 

14.2.3.4.5 Dump Memory Block (DUMP). 

 

DUMP is used in conjunction with the READ 
command to dump large blocks of memory. An initial READ is executed to set up the starting 
address of the block and to retrieve the first result. The DUMP command retrieves 
subsequent operands. The initial address is incremented by the operand size (1, 2, or 4) and 
saved in a temporary register (Address Breakpoint High (ABHR)). Subsequent DUMP 
commands use this address, perform the memory read, increment it by the current operand 
size, and store the updated address in ABHR.

 

NOTE

 

The DUMP command does not check for a valid address in
ABHRÑDUMP is a valid command only when preceded by
another DUMP, NOP or by a READ command. Otherwise, an
illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the
address pointer. 

The size field is examined each time a DUMP command is given, allowing the operand size 
to be dynamically altered.



 

Debug Support

 

14-18

 

MCF5206 USERÕS MANUAL Rev 1.0

 

MOTOROLA

 

Command Formats:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $0 $0

 Byte DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

X X X X X X X X DATA [7:0]

 Byte DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $4 $0

 Word DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [15:0]

 Word DUMP Result

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $D $8 $0

  Long DUMP Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

  Long DUMP Result



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-19

Command Sequence:

Operand Data:
None

Result Data:
Requested data is returned as either a word or longword. Byte data is returned in the least
significant byte of a word result. Word results return 16 bits of significant data; longword re-
sults return 32 bits. Status of the read operation is returned as in the READ command:
$0xxxx for success, $10001 for a bus error.

XXX
"NOT READY"

NEXT CMD
 RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ�
MEMORY�
LOCATION

DUMP (B/W)
???

XXX
"NOT READY"

NEXT CMD
 MS RESULT

XXX
BERR

XXX
"ILLEGAL"

NEXT CMD
"NOT READY"

NEXT CMD
"NOT READY"

READ�
MEMORY�
LOCATION

DUMP (LONG)
???

NEXT CMD
LS RESULT



Debug Support

14-20 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

14.2.3.4.6 Fill Memory Block (FILL). FILL is used in conjunction with the WRITE 
command to fill large blocks of memory. An initial WRITE is executed to set up the starting 
address of the block and to supply the first operand. The FILL command writes subsequent 
operands. The initial address is incremented by the operand size (1, 2, or 4) and is saved in 
ABHR after the memory write. Subsequent FILL commands use this address, perform the 
write, increment it by the current operand size, and store the updated address in ABHR.

NOTE

The FILL command does not check for a valid address in
ABHRÑFILL is a valid command only when preceded by
another FILL, NOP or by a WRITE command. Otherwise, an
illegal command response is returned. The NOP command can
be used for intercommand padding without corrupting the
address pointer. 

The size field is examined each time a FILL command is processed, allowing the operand 
size to be altered dynamically. 

Formats: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $0 $0

X X X X X X X X DATA [7:0]

  Byte FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $4 $0

DATA [15:0]

 Word FILL Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$1 $C $8 $0

DATA [31:16]

DATA [15:0]

  Long FILL Command



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-21

Command Sequence:

Operand Data:
A single operand is data to be written to the memory location. Byte data is transmitted as a
16-bit word, justified in the least significant byte; 16- and 32-bit operands are transmitted as
16 and 32 bits, respectively.

Result Data:
Status is returned as in the WRITE command: $0FFFF for a successful operation and
$10001 for a bus error during a write.

14.2.3.4.7 Resume Execution (GO). The pipeline is flushed and refilled before resuming 
normal instruction execution. Prefetching begins at the current PC and current privilege 
level. If either the PC or SR is altered during BDM, the updated value of these registers is 
used when prefetching begins.

Formats: 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$0 $C $0 $0

  GO Command

NEXT CMD
"NOT READY"

"NOT READY"

XXX
BERR

"CMD COMPLETE"

DATA
"NOT READY"

XXX

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

FILL (LONG)
???

WRITE�
MEMORY�
LOCATION

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX
BERR

"CMD COMPLETE"

MS DATA
"NOT READY"

NEXT CMDXXX
"ILLEGAL"

NEXT CMD
"NOT READY"

LS DATA
"NOT READY"

WRITE�
MEMORY�
LOCATION

FILL (B/W)
???



Debug Support

14-22 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

Command Sequence:

Operand Data:
None

Result Data:
The Òcommand completeÓ response ($0FFFF) is returned during the next shift operation.

14.2.3.4.8 No Operation (NOP). NOP performs no operation and can be used as a null 
command, where required.

Formats: 

Command Sequence:

Operand Data:
None

Result Data:
The Òcommand completeÓ response ($0FFFF) is returned during the next shift operation.

14.2.3.4.9 Read Control Register (RCREG). Read the selected control register and return 
the 32-bit result. Accesses to the processor/memory control registers are always 32 bits in 
size, regardless of the implemented register width. The second and third words of the 
command effectively form a 32-bit address the debug module uses to generate a special bus 
cycle to access the specified control register. The 12-bit Rc field is the same as that used 
by the MOVEC instruction.

15 12 11 8 7 4 3 0

$0 $0 $0 $0

  NOP Command

GO
???

NEXT CMD
"CMD COMPLETE"

NOP
???

NEXT CMD�
"CMD COMPLETE"



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-23

Formats

Rc encoding:

Command Sequence:

Operand Data:
The single operand is the 32-bit Rc control register select field.

Result Data:
The contents of the selected control register are returned as a longword value. The data is
returned by most significant word first. For those control register widths less than 32 bits,
only the implemented portion of the register is guaranteed to be correct. The remaining bits 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $9 $8 $0

$0 $0 $0 $0

$0 RC

 RCREG Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

 RCREG Result

Table 14-5. Control Register Map
Rc REGISTER DEFINITION

$002 Cache Control Register (CACR)
$004 Access Control Unit 0 (ACR0)
$005 Access Control Unit 1 (ACR1)
$801 Vector Base Register (VBR)
$80E Status Register (SR)
$80F Program Counter (PC)
$C04 RAM Base Address Register (RAMBAR)
$C0F Module Base Address Register (MBAR)

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

RCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

MS RESULT

READ
MEMORY
LOCATION

NEXT CMD
LS RESULT

XXX



Debug Support

14-24 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

of the longword are undefined. As an example, a read of the 16-bit SR will return the SR in
the lower word and undefined data in the upper word.

14.2.3.4.10 Write Control Register (WCREG). The operand (longword) data is written to 
the specified control register. The write alters all 32 register bits. 

Formats:

Command Sequence:

See Table 14-6 for Rc encodings.

Operand Data:
Two operands are required for this instruction. The first long operand selects the register to
which the operand data is to be written. The second operand is the data.

Result Data:
Successful write operations return a status of $0FFFF. Bus errors on the write cycle are in-
dicated by the assertion of bit 16 in the status message and by a data pattern of $0001.

14.2.3.4.11  Read Debug Module Register (RDMREG). Read the selected Debug Module 
Register and return the 32-bit result. The only valid register selection for the RDMREG 
command is the CSR (DRc = $0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $8 $8 $0

$0 $0 $0 $0

$0 Rc

DATA [31:16]

DATA [15:0]

  WCREG Command

EXT WORD
"NOT READY"

EXT WORD
"NOT READY"

WCREG
???

NEXT CMD
"NOT READY"

XXX
"NOT READY"

XXX

XXX
BERR

   "CMD COMPLETE
NEXT CMD

WRITE
MEMORY
LOCATION

MS DATA
"NOT READY"

LS DATA
"NOT READY"



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-25

Command Formats:

DRc encoding:

Command Sequence:

Operand Data:
None

Result Data:
The contents of the selected debug register are returned as a longword value. The data is
returned most significant word first.

14.2.3.4.12  Write Debug Module Register (WDMREG). The operand (longword) data is 
written to the specified Debug Module Register. All 32 bits of the register are altered by the 
write. The DSCLK signal must be inactive while CPU execution of the WDEBUG instruction 
is performed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $D $8 DRc

  RDMREG BDM Command

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA [31:16]

DATA [15:0]

  RDMREG BDM Result

Table 14-6. Definition of DRc Encoding - Read

DRC[3:0] DEBUG REGISTER DEFINITION MNEMONIC
INITIAL 
STATE

$0 Configuration/Status CSR $0

$1-$F Reserved - Ð

XXX
MS RESULT

XXX
"ILLEGAL"

NEXT CMD
LS RESULT

NEXT CMD
"NOT READY"

RDMREG
???



Debug Support

14-26 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

Command Format:

DRc encoding:

Command Sequence:

Operand Data:
Longword data is written into the specified debug register. The data is supplied most signif-
icant word first.

Result Data:
Command complete status ($0FFFF) is returned when register write is complete.

14.2.3.4.13  Unassigned Opcodes. Motorola reserves unassigned command opcodes . All 
unused command formats within any revision level will perform a NOP and return the 
ILLEGAL command response.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

$2 $C $8 DRC

DATA [31:16]

DATA [15:0]

 WDMREG BDM Command

Table 14-7. Definition of DRc Encoding - Write

DRc[3:0] DEBUG REGISTER DEFINITION MNEMONIC
INITIAL 
STATE

$0 Configuration/Status CSR $0

$1-$5 Reserved - Ð

$6 Bus Attributes And Mask AATR $0005

$7 Trigger Definition TDR $0

$8 PC Breakpoint PBR Ð

$9 PC Breakpoint Mask PBMR Ð

$A-$B Reserved Ð Ð

$C Operand Address High Breakpoint ABHR Ð

$D Operand Address Low Breakpoint ABLR Ð

$E Data Breakpoint DBR Ð

$F Data Breakpoint Mask DBMR Ð

MS DATA
"NOT READY"

XXX
"ILLEGAL"

LS DATA
"NOT READY"

NEXT CMD
"NOT READY"

WDMREG
???

NEXT CMD
"CMD COMPLETE"



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-27

14.3  REAL-TIME DEBUG SUPPORT
ColdFire processors provide support for the debug of real-time applications. For these types 
of embedded systems, the processor cannot be halted during debug but must continue to 
operate. The foundation of this area of debug support is that while the processor cannot be 
halted to allow debugging, the system can tolerate small intrusions into the real-time 
operation.

As discussed in the previous subsection, the debug module provides a number of hardware 
resources to support various hardware breakpoint functions. Specifically, three types of 
breakpoints are supported: PC with mask, operand address range, and data with mask. 
These three basic breakpoints can be configured into one- or two-level triggers with the 
exact trigger response also programmable. 

14.3.1 Programming Model
In addition to the existing BDM commands that provide access to the processorÕs registers 

and the memory subsystem, the Debug module contains a number of registers to support 
the required functionality. All of these registers are treated as 32-bit quantities, regardless 
of the actual number of bits in the implementation. The registers, known as the Debug 
Control Registers (DRc), are addressed using a 4-bit value as part of two new BDM 
commands (WDREG, RDREG).

These registers are also accessible from the processorÕs supervisor programming model 
through the execution of the WDEBUG instruction (Figure 14-5 illustrates the debug module 
programming model). Thus, the breakpoint hardware within the debug module can be 
accessed by the external development system using the serial interface, or by the operating 
system running on the processor core. It is the responsibility of the software to guarantee 
that all accesses to these resources are serialized and logically consistent. The hardware 

Figure 14-5. Debug Programming Model

ADDRESS
BREAKPOINT REGISTERS

PC BREAKPOINT
REGISTERS

DATA BREAKPOINT
REGISTERS

ABLR
ABHR

PBR
PBMR

DBMR
DBR

TDR

15

0

31

TRIGGER DEFINITION
REGISTER

ADDRESS ATTRIBUTE
TRIGGER REGISTERAATR

7

0

15

CSR
CONFIGURATION/STATUS
REGISTER



Debug Support

14-28 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

provides a locking mechanism in the CSR to allow the external development system to 
disable any attempted writes by the processor to the Breakpoint Registers (setting IPW =1).

14.3.1.1 ADDRESS BREAKPOINT REGISTERS (ABLR, ABHR). The Address 
Breakpoint Registers define an upper (ABHR) and a lower (ABLR) boundary for a region in 
the operand logical address space of the processor that can be used as part of the trigger. 
The ABLR and ABHR values are compared with the ColdFire CPU core address signals, as 
defined by the setting of the TDR.

14.3.1.2 ADDRESS ATTRIBUTE BREAKPOINT REGISTER (AATR). The AATR defines 
the address attributes and a mask to be matched in the trigger. The AATR value is 
compared with the ColdFire CPU core address attribute signals, as defined by the setting of 
the TDR. The AATR is accessible in supervisor mode as debug control register $6 using the 
WDEBUG instruction and via the BDM port using the WDMREG command. The lower five 
bits of the AATR are also used for BDM command definition to define the address space for 
memory references as described in subsection 14.3.2.1 Reuse of the Debug Module 
Hardware.

RMÐRead/Write Mask
This field corresponds to the R-field. When this bit is set, R is ignored in address 
comparisons.

SZMÐSize Mask
This field corresponds to the SZ field. When a bit in this field is set, the corresponding bit in
SZ is ignored in address comparisons.

TTMÐTransfer Type Mask
This field corresponds to the TT field. When a bit in this field is set, the corresponding bit in
TT is ignored in address comparisons.

TMMÐTransfer Modifier Mask
This field corresponds to the TM field. When a bit in this field is set, the corresponding bit in
TM is ignored in address comparisons.

RÐRead/Write
This field is compared with the ColdFire CPU core R/W signal. A high level indicates a read
cycle and a low level indicates a write cycle.

SZÐSize
This field is compared with the ColdFire CPU core SIZ signals.

15 14 13 12 11 10 8 7 6 5 4 3 2 0

RM SZM TTM TMM R SZ TT TM

  AATR Bit Definitions



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-29

SZÑ-Size
This field is compared to the ColdFire CPU core SIZ signals. These signals indicate the data
size for the bus transfer. Table 14-8 shows the definitions for the SZ encodings.

TTÐTransfer Type
This field is compared with the ColdFire CPU core TT signals. These signals indicate the
transfer type for the bus transfer. Table 14-9 shows the definition of the TT encodings.

TMÐTransfer Modifier
This field is compared with the ColdFire CPU core TM signals. These signals provide sup-
plemental information for each transfer type. Table 14-10 shows encodings for normal trans-
fers and Table 14-11 shows the encodings for alternate and debug access transfers. For
interrupt-acknowledge transfers, the TM [2:0] signals indicate the interrupt level being 
acknowledged. For CPU space transfers initiated by a MOVEC instruction or a debug 

Table 14-8. SZ Encodings

SZ[1:0] TRANSFER SIZE

00 Longword (4 bytes)

01 Byte

10 Word (2 bytes)

11 Line (4 x 4 bytes)

Table 14-9. Transfer Type Encodings

TT[1:0] TRANSFER TYPE

00 Normal Access

01 Reserved

10 Alternate and Debug 
Access

11 Acknowledge Access



Debug Support

14-30 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

WCREG command, TT[1:0] = 11 and TM[2:0] = 000. For breakpoint-acknowledge transfers,
the TM signals are low.

14.3.1.3 PROGRAM COUNTER BREAKPOINT REGISTER (PBR, PBMR). The PC 
Breakpoint Registers define a region in the instruction address space of the processor that 
can be used as part of the trigger. The PBR value is masked by the PBMR value, allowing 
only those bits in PBR that have a corresponding zero in PBMR to be compared with the 
processorÕs program counter register as defined in the TDR.

14.3.1.4 DATA BREAKPOINT REGISTER (DBR, DBMR). The Data Breakpoint Registers 
define a specific data pattern that can be used as part of the trigger into Debug mode.The 
DBR value is masked by the DBMR value, allowing only those bits in DBR that have a 
corresponding zero in DBMR to be compared with the ColdFire CPU core data signals, as 
defined in the TDR.

The data breakpoint register supports both aligned and misaligned operand references. The 
relationship between the processor core address, the access size, and the corresponding 
location within the 32-bit core data bus is shown in Table 14-12.

Table 14-10. Transfer Modifier Encodings for Normal Transfers

TM[2:0] TRANSFER MODIFIER

000 Reserved

001 User Data Access

010 User Code Access

011 - 100 Reserved

101 Supervisor Data Access

110 Supervisor Code Access

111 Reserved

Table 14-11. Transfer Modifier Encodings for Alternate Access Transfers

TM[2:0] TRANSFER MODIFIER

000 - 100, 111 Reserved

101 Emulator Mode Data Access

110 Emulator Mode Code Access

Table 14-12. Core Address, Access Size, and Operand Location

CORE 
ADDRESS[1:0]

ACCESS 
SIZE

OPERAND 
LOCATION

00 Byte Data[31:24]

01 Byte Data[23:16]



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-31

14.3.1.5 TRIGGER DEFINITION REGISTER (TDR). The TDR configures the operation of 
the hardware breakpoint logic within the Debug module and controls the actions taken under 
the defined conditions. The breakpoint logic can be configured as a one- or two-level trigger, 
where bits [29:16] of the TDR define the 2nd level trigger, bits [13:0] define the first level 
trigger, and bits [31:30] define the trigger response. 

Reset clears the TDR.

TRCÐTrigger Response Control
The trigger response control determines how the processor is to respond to a completed
trigger condition. The trigger response is always displayed on the DDATA pins.

00=displayed on DDATA pins only
01=processor halt
10=debug interrupt
11=reserved

EBLÐEnable Breakpoint Level
If set, this bit serves as the global enable for the breakpoint trigger. If cleared, all breakpoints
are disabled.

EDLWÐEnable Data Breakpoint for the Data Longword
If set, this bit enables the data breakpoint based on the core data bus (KD) KD[31:0] 
longword. The assertion of any of the ED bits enables the data breakpoint. If all bits are
cleared, the data breakpoint is disabled.

EDWLÐEnable Data Breakpoint for the Lower Data Word
If set, this bit enables the data breakpoint based on the KD[15:0] word.

10 Byte Data[15:8]

11 Byte Data[7:0]

0- Word Data[31:16]

1- Word Data[15:0]

-- Long Data[31:0]

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TRC EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 EBL EDLW EDWL EDWU EDLL EDLM EDUM EDUU DI EAI EAR EAL EPC PCI

  TDR Bit Definitions

Table 14-12. Core Address, Access Size, and Operand Location

CORE 
ADDRESS[1:0]

ACCESS 
SIZE

OPERAND 
LOCATION



Debug Support

14-32 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

EDWUÐEnable Data Breakpoint for the Upper Data Word
If set, this bit enables the data breakpoint trigger based on the KD[31:16] word.

EDLLÐEnable Data Breakpoint for the Lower Lower Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[7:0] byte.

EDLMÐEnable Data Breakpoint for the Lower Middle Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[15:8] byte.

EDUMÐEnable Data Breakpoint for the Upper Middle Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[23:16] byte.

EDUUÐEnable Data Breakpoint for the Upper Upper Data Byte
If set, this bit enables the data breakpoint trigger based on the KD[31:24] byte.

DIÐData Breakpoint Invert
This bit provides a mechanism to invert the logical sense of all the data breakpoint compar-
ators.  This can develop a trigger based on the occurrence of a data value not equal to the
one programmed into the DBR.

The assertion of any of the EA bits enables the address breakpoint. If all three bits are
cleared, this breakpoint is disabled.

EAIÐEnable Address Breakpoint Inverted
If set, this bit enables the address breakpoint based outside the range defined by ABLR and
ABHR.

EARÐEnable Address Breakpoint Range
If set, this bit enables the address breakpoint based on the inclusive range defined by ABLR
and ABHR.

EALÐEnable Address Breakpoint Low
If set, this bit enables the address breakpoint based on the address contained in the ABLR.

EPCÐEnable PC Breakpoint
If set, this bit enables the PC breakpoint. Clearing this bit disables the PC breakpoint.

PCIÐPC Breakpoint Invert
If set, this bit allows execution outside a given region as defined by PBR and PBMR to en-
able a trigger. If cleared, the PC breakpoint is defined within the region defined by PBR and
PBMR.

14.3.1.6 CONFIGURATION/STATUS REGISTER (CSR). The Configuration/Status 
Register defines the operating configuration for the processor and memory subsystem. In 



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-33

addition to defining the microprocessor configuration, this register also contains status 
information from the breakpoint logic. The CSR is cleared during system reset. The CSR can 

be read and written by the external development system and written by the supervisor 
programming model.

StatusÐBreakpoint Status
This 4-bit field defines provides read-only status information concerning the hardware
breakpoints. This field is defined as follows:

$0 = no breakpoints enabled
$1 = waiting for level 1 breakpoint
$2 = level 1 breakpoint triggered
$5 = waiting for level 2 breakpoint
$6 = level 2 breakpoint triggered

The CSR[30-28] bits are translated and output on the DDATA[3:1] signals where x is the
DDATA[0] bit.

000x = no breakpoints enabled
001x = waiting for level 1 breakpoint
010x = level 1 breakpoint triggered
101x = waiting for level 2 breakpoint
110x = level 2 breakpoint triggered

This breakpoint status is also output on the DDATA port when the bus is not displaying Cold-
Fire CPU core captured data. A write to the TDR resets this field.

FOFÐFault-on-Fault
If this read-only status bit is set, a catastrophic halt has occurred and forced entry into BDM.
This bit is cleared on a read of the CSR.

TRGÐHardware Breakpoint Trigger
If this read-only status bit is set, a hardware breakpoint has halted the processor core and
forced entry into BDM. This bit is cleared on a read from the CSR or when the processor is
restarted.

31 28 27 26 25 24 23 17 16

STATUS FOF TRG HALT BKPT RESERVED IPW

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAP TRC EMU DDC UHE BTB 0 NPL IPI SSM 0 0 0 0

 CSR Bit Definitions



Debug Support

14-34 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

HaltÐProcessor Halt
If this read-only status bit is set, the processor has executed the HALT instruction and forced
entry into BDM. This bit is cleared on a read from the CSR or when the processor is 
restarted.

BKPTÐBKPT Assert
If this read-only status bit is set, the BKPT signal was asserted, forcing the processor into
BDM. This bit is cleared on a read from the CSR or when the processor is restarted.

IPWÐInhibit Processor Writes to Debug Registers
If set, this bit inhibits any processor-initiated writes to the debug moduleÕs programming
model registers. This bit can be modified only by commands from the external development
system.

MAPÐForce Processor References in Emulator Mode
If set, this bit forces the processor to map all references while in emulator mode to a special
address space, TT = 10, TM = 101 (data) and 110 (text). If cleared, all emulator-mode ref-
erences are mapped into supervisor text and data spaces.

TRCÐForce Emulation Mode on Trace Exception
If set, this bit forces the processor to enter emulator mode when a trace exception occurs.

EMUÐForce Emulation Mode
If set, this bit forces the processor to begin execution in emulator mode. This bit is examined
only when RSTI is negated, as the processor begins reset exception processing.

DDCÐDebug Data Control
This 2-bit field provides configuration control for capturing operand data for display on the
DDATA port. The encoding is as follows:

00 = no operand data is displayed
01 = capture all M-Bus write data
10 = capture all M-Bus read data
11 = capture all M-Bus read and write data

In all cases, the DDATA port displays the number of bytes defined by the operand reference
size, i.e., byte displays 8 bits, word displays 16 bits, and long displays 32 bits.

UHE-User Halt Enable
This bit selects the CPU privilege level required to execute the HALT instruction.

0 = HALT is a privileged, supervisor-only instruction
1 = HALT is a nonprivileged, supervisor/user instruction



Debug Support

MOTOROLA MCF5206 USERÕS MANUAL Rev 1.0 14-35

BTBÐBranch Target Bytes
This 2-bit field defines the number of bytes of branch target address to be displayed on the
DDATA outputs. The encoding is as follows:

00 = 0 bytes
01 = lower two bytes of the target address
10 = lower three bytes of the target address
11 = entire four-byte target address 

The bytes are always displayed in a least-significant-to-most-significant order. The proces-
sor captures only those target addresses associated with taken branches using a variant ad-
dressing mode. This includes JMP and JSR instructions using address register indirect or
indexed addressing modes, all RTE and RTS instructions as well as all exception vectors.

NPLÐNonpipelined Mode
If set, this bit forces the processor core to operate in a nonpipeline mode of operation. In this
mode, the processor effectively executes a single instruction at a time with no overlap.

IPIÐIgnore Pending Interrupts
If set, this bit forces the processor core to ignore any pending interrupt requests signalled
on KIPL[2:0] while executing in single-instruction-step mode.

SSMÐSingle-Step Mode
If set, this bit forces the processor core to operate in a single-instruction-step mode. While
in this mode, the processor executes a single instruction and then halts. While halted, any
of the BDM commands can be executed. On receipt of the GO command, the processor ex-
ecutes the next instruction and then halts again. This process continues until the single-in-
struction-step mode is disabled.

Reserved
All bits labeled Reserved or Ò0Ó are currently unused and reserved for future use. These bits
should always be written as 0.

14.3.2 Theory of Operation
The breakpoint hardware can be configured to respond to triggers in several ways. The 
preferred response is programmed into the Trigger Definition Register. In all situations 
where a breakpoint triggers, an indication is provided on the DDATA output port (when not 
displaying captured operands or branch addresses) as shown in Table 14-13.



Debug Support

14-36 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

The breakpoint status is also posted in the CSR.

The new BDM instructions load and configure the desired breakpoints using the appropriate 
registers. As the system operates, a breakpoint trigger generates a response as defined in 
the TDR. If the system can tolerate the processor being halted, a BDM entry can be used. 
With the TRC bits of the TDR = 01, the breakpoint trigger halts the core (as reflected in the 
PST = $F status). For PC breakpoints, the halt occurs before the targeted instruction is 
executed. For address and data breakpoints, the processor may have executed several 
additional instructions. For these breakpoints, trigger reporting is imprecise.

If the processor core cannot be halted, the special debug interrupt can be used. With this 
configuration, TRC bits of the TDR = 10, the breakpoint trigger is converted into a debug 
interrupt to the processor. This interrupt is treated as higher than the nonmaskable level 7 
interrupt request. As with all interrupts, it is made pending the processor samples, once per 
instruction. Again, the hardware forces the PC breakpoint to occur immediately (before the 
execution of the targeted instruction). This is possible because the PC breakpoint 
comparison is enabled at the same time the interrupt sampling occurs. For the address and 
data breakpoints, the reporting is imprecise.

Once the debug interrupt is recognized, the processor aborts execution and initiates 
exception processing. At the initiation of the exception processing, the core enters emulator 
mode. Depending on the state of the MAP bit in the CSR, this mode could force all memory 
accesses (including the exception stack frame writes and the vector fetch) into a specially 
mapped address space signalled by TT = 2, TM = {5, 6}. After the standard 8-byte exception 
stack is created, the processor fetches a unique exception vector (offset $030) from the 
vector table.

Execution continues at the instruction address contained in this exception vector. All 
interrupts are ignored while in emulator mode. You can program the debug-interrupt handler 
to perform the necessary context saves using the supervisor instruction set. As an example, 
this handler may save the state of all the program-visible registers as well as the current 
context into a reserved memory area. 

Table 14-13. DDATA, CSR[31:28] Breakpoint Response

DDATA[3:0], 
CSR[31:28]

BREAKPOINT STATUS

000x, $0 No breakpoints enabled

001x, $1 Waiting for Level 1 breakpoint

010x, $2 Level 1 breakpoint triggered

011x-100x, $3-4 Reserved

101x, $5 Waiting for Level 2 breakpoint

110x, $6 Level 2 breakpoint triggered

111x, $7-$F Reserved



Debug Support

14-37 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

Once the required operations are completed, the return-from-exception (RTE) instruction is 
executed and the processor exits emulator mode. The processor status output port provides 
a unique encoding for emulator mode entry ($D) and exit ($7). Once the debug interrupt 
handler has completed its execution, the external development system can then access the 
reserved memory locations using the BDM commands to read memory.

14.3.2.1 REUSE OF THE DEBUG MODULE HARDWARE.  The Debug module 
implementation provides a common hardware structure for both BDM and breakpoint 
functionality. Several structures are used for both BDM and breakpoint purposes. Table 14-
14 identifies the shared hardware structures.

The shared use of these hardware structures means the loading of the register to perform 
any specified function is destructive to the shared function. For example, if an operand 
address breakpoint is loaded into the debug module, a BDM command to access memory 
overwrites the breakpoint. If a data breakpoint is configured, a BDM write command 
overwrites the breakpoint contents.

14.3.3 Concurrent BDM and Processor Operation
The debug module supports concurrent operation of both the processor and most BDM 
commands. BDM commands can be executed while the processor is running, except for the 
operations that access processor/memory registers:

¥ Read/Write Address and Data Registers

¥ Read/Write Control Registers

For BDM commands that access memory, the debug module requests the ColdFire coreÕs 
bus. The processor responds by stalling the instruction fetch pipeline and then waiting until 
all current core bus activity is complete. At that time, the processor relinquishes the core bus 
to allow the debug module to perform the required operation. After the conclusion of the 
debug module core bus cycle, the processor reclaims ownership of the core bus.

The development system must be careful when configuring the Breakpoint Registers if the 
processor is executing. The debug module does not contain any hardware interlocks; 
therefore Motorola recommends that the TDR be disabled while the Breakpoint Registers 
are being loaded. At the conclusion of this process, the TDR can be written to define the 
exact trigger. This approach guarantees that no spurious breakpoint triggers will occur.

Because there are no hardware interlocks in the debug unit, no BDM operations are allowed 
while the CPU is writing the Debug Registers (SDSCLK must be inactive).

Table 14-14. Shared BDM/Breakpoint Hardware

REGISTER BDM FUNCTION BREAKPOINT FUNCTION

AATR Bus attributes for all memory commands Attributes for address 
breakpoint

ABHR Address for all memory commands Address for address 
breakpoint

DBR Data for all BDM write commands Data for data breakpoint



Debug Support

14-38 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

14.4 MOTOROLA RECOMMENDED BDM PINOUT
The ColdFire BDM connector is a 26-pin Berg connector arranged 2x13, shown in Figure 
14-6.

NOTES:
1 Supplied by target
2 Pins reserved for BDM developer use. Contact developer.
* Denotes a vectored signal

Figure 14-6. 26-Pin Berg Connector Arranged 2x13

14.4.1 Differences Between the ColdFire BDM and a CPU32 BDM
1. DSCLK, BKPT, and DSDI must meet the setup and hold times relative to the rising 

edge of the processor clock to prevent the processor from propagating metastable 
states.

2. DSO transitions relative to the rising edge of DSCLK only. In the CPU32 BDM, DSO 
transitions between serial transfers to indicate to the development system that a com-
mand has successfully completed. The ColdFire BDM does not support this feature. 

3. The development system must note that the DSO is not valid during the first rising 
edge of DSCLK. Instead, the first rising edge of DSCLK causes DSO to transmit the 
MSB of DSO. A serial transfer is illustrated in Figure 14-7.

1

3

5

7

9

11

13

15

17

19

21

23

25

2

4

6

8

10

12

14

16

18

20

22

24

26

DEVELOPER RESERVED 2

GND

GND

RESET*

+5V1

GND

PST2

PST0

DDATA2

DDATA0*

MOTOROLA RESERVED

GND

VCC_CPU

BKPT

DSCLK

DEVELOPER RESERVED 2

DSI

DSO

PST3*

PST1

DDATA3*

DDATA1

GND

MOTOROLA RESERVED

CLK_CPU

TEA



Debug Support

14-39 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA

Figure 14-7. Serial Transfer Illustration

16 15 0

16 15 1 0

DSCLK

DSI

DSO



Debug Support

14-40 MCF5206 USERÕS MANUAL Rev 1.0 MOTOROLA


