

MOTOROLA

MCF5206 USERÕS MANUAL Rev 1.0

Appendix B-1

C

D

E

F

G

H

I

J

K

L

M

N

O

P

A

APPENDIX B
PORTING FROM M68K ARCHITECTURE

This section is an overview of the issues encountered when porting embedded development
tools to work with the ColdFire processor when starting with the M68K architecture.

B.1 C COMPILERS AND HOST SOFTWARE

For the purpose of this discussion, it is assumed that an embedded software development
tool chain consists of a ÒhostÓ portion and a ÒtargetÓ portion. The host portion consists of tool
chain parts that execute on a desktop computer or workstation. The target portion of the tool
chain runs ColdFire executables on a physical ColdFire target board.

Compilers, assemblers, linkers, loaders, instruction set simulators, and the host portion of
debuggers are examples of host tools. Many host tools such as linkers and loaders that work
with the M68K architecture can also be used without modification with ColdFire.

Although you can use an existing M68K assembler and disassembler with ColdFire,
Motorola recommends modifying the assembler so that nonColdFire assembly code cannot
be put together in the executable. This is especially true if the assembler assembles
handwritten code. Porting the disassembler is for convenience and can be performed later.

Debuggers usually are comprised of two parts. A host portion of the debugger typically
issues higher level commands for the target portion of debugger target. The target portion
of the debugger typically handles the exact details of the implementation of tracing,
breakpoints, and other lower level details. The debugger host portion requires little
modification. Most likely, the only architectural items of concern are the following:

¥ Differences in the designed supervisor registers and stack pointers (for displaying
registers)

¥ Interpretation of exception stack frames (if not already performed by the target portion)

B.2 TARGET SOFTWARE PORT

Porting ROM monitors and operating systems can begin after the compiler and assembler
have been ported. For example, consider the steps involved in porting a ROM debugger.
Similar issues are encountered when porting an RTOS and target applications.

It is assumed that target software consists of C and assembly source code. The first step is
to create executables that will run on existing M68K hardware to test the conversion from
M68K code to the proper ColdFire subset. This step verifies that the process of code
conversion does not introduce new errors.

Appendix B

Appendix B-2

MCF5206

USERÕS MANUAL Rev 1.0

MOTOROLA

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

A

To generate a ColdFire executable of the target debugger, you should use a ColdFire-
compliant port of the same C compiler originally used to create the M68K debugger target.
This procedure prevents differences in calling convention and parameter passing from C to
handwritten assembly. Another advantage to this approach is that special C flags are
retained. Many C compilers have special extensions as well.

Whichever approach is used, the assembly language lines that are outside the ColdFire
instruction set must be identified. Any ColdFire assembler that properly flags nonColdFire
instructions can be used. During the process of conversion, you can ignore architectural
issues temporarily because the target is still an M68K.

Once the instruction set differences have been resolved, the architectural differences
between the ColdFire and M68K need to be addressed.

B.3 INITIALIZATION CODE

The target software and firmware often execute code that identifies the type of processor.
Such a process provides one port that works with various M68K Family members and
implementations. The easiest way to identify the ColdFire architecture from other M68K
processors is to execute an ILLEGAL opcode ($4AFC). This execution generates an
exception stack frame while ensuring that the tracing is disabled. The first two bits of the
exception stack frame would immediately determine whether the processor is a ColdFire
processor.

Motorola suggests that ColdFire architecture testing be performed immediately to avoid
executing potentially undefined opcodes in the ColdFire architecture. Unused opcodes in
the ColdFire architecture are not guaranteed to result in an illegal instruction exception.

Another item to consider is that the ColdFire architecture will have integrated versions with
modules yet to be defined. It may be a good idea to ensure that there are enough hooks to
allow for initialization of routines.

B.4 EXCEPTION HANDLERS

When dealing with exceptions in debug-oriented software, it is often necessary to extract
exception stack information to obtain the SR and PC. The format word (MC68010 and
higher) is typically used by generalized exception routines. Their sole purpose is to catch
unexpected exceptions and to easily use vector information to identify the cause of the
exception. The MC68000 exception frame is different from that of other members of the
M68K processors in that there is no notion of a format word. This difference would have
forced target software to deal with exception stack frame differences already. The approach
now in use provides guidance on handling ColdFire exception stack frame differences. In
many low-level exception handlers, the extraction of the stacked SR, PC, or format word is
performed in a common source file or the offsets are handled in some type of header file.

Interrupt handlers probably require no modification because in most cases, an interrupt
occurs asynchronously with respect to normal program flow. Therefore, interrupt handlers
cannot rely on items on the stack as it is often unnecessary to know exactly what was
happening at the time of the interrupt.

Appendix B

MOTOROLA

MCF5206

USERÕS MANUAL Rev 1.0

Appendix B-3

B

C

D

F

G

H

I

K

L

O

P

A

System calls are often implemented by using the TRAP instruction. For trap exceptions,
parameter passing is performed through data and address registersÑrarely, if ever, directly
through the stack. In addition, a system call typically does not need to know the stacked SR
or PC information.

Breakpoints are usually implemented with the TRAP instruction or an illegal instruction such
as an $A-line exception. If so, the stacked SR and PC are typically used. Other items in the
stack may also need to be queried, especially if the breakpoint displays a stack trace. If so,
you should examine the format closely for stack misalignments at the time of the breakpoint.
This stack misalignment check would be useful in applications where stack alignment is a
software design goal. These same concerns for the breakpoint implementation are
applicable to trace exceptions as well.

A generalized exception handler can be implemented to catch unexpected exceptions. In
addition to the SR and PC information, it is often necessary to obtain the vector information
in the stack. Otherwise, the issues are similar to those found on breakpoints and tracing.

To port the ColdFire access error exception, it is best to start with an MC68000 bus error
handler. The ColdFire access error recovery sequence has many similarities to the
procedure recommended for the MC68000. However, you should be aware that a read bus
error on the ColdFire will not advance the program counter to the next instruction. In
addition, a write bus error may be taken long after an instruction has been executed and the
stacked program counter may not point to the offending instruction.
The main cause of an address error exception in the M68K architecture is that program flow
is forced to continue at an odd address boundary. In addition, an MC68000 reports an
address error if a data byte access is initiated on an odd address. The ColdFire uses the
address error for implementations that do not have the misalignment module. A misaligned
data access is then initiated. Modification of the address error exception handler to reflect a
ColdFire misalignment exception is optional. The MCF5202 contains hardware support for
data misalignment and therefore this is not an issue for family members.

On a ROM monitor, it is often necessary to provide a means by which a user program is
executed given a certain starting address. This is often implemented by placing an exception
stack frame and then performing an RTE. If this is the case, the header files that define what
a stack frame looks like would require modification to reflect the ColdFire stack frame format.

B.5 SUPERVISOR REGISTERS

The target software would eventually need to communicate the contents of registers to the
host software. Both the host portions and target portions of a debugger must be modified to
reflect the single stack pointer architecture of ColdFire. In addition, the target debugger must
keep a copy of the MOVEC register images in memory so that it can provide the host
software register contents when asked to do so. A UNIX

grep

 utility can find all instances of
the MOVEC instruction and perform the appropriate modifications to accommodate the
unidirectional MOVEC instruction.

The ColdFire architecture does not distinguish between a supervisor stack and a user stack.
There is only a single stack pointer, A7. One way of dealing with this issue is to emulate the

Appendix B

Appendix B-4

MCF5206

USERÕS MANUAL Rev 1.0

MOTOROLA

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

A

dual stacks by placing some code at the beginning and end portions of exception handlers
to change the stack pointer contents, if necessary, during exceptions. This approach has the
disadvantage that interrupt latency would be degraded because interrupts would have to be
disabled during the stack-swapping process, but enable full flexibility of the 68K stack
model.

