The simplest RTL expressions are those that represent constant values.
(const_int i)
INTVAL
as in
INTVAL (exp)
, which is equivalent to XWINT (exp, 0)
.
There is only one expression object for the integer value zero; it is
the value of the variable const0_rtx
. Likewise, the only
expression for integer value one is found in const1_rtx
, the only
expression for integer value two is found in const2_rtx
, and the
only expression for integer value negative one is found in
constm1_rtx
. Any attempt to create an expression of code
const_int
and value zero, one, two or negative one will return
const0_rtx
, const1_rtx
, const2_rtx
or
constm1_rtx
as appropriate.
Similarly, there is only one object for the integer whose value is
STORE_FLAG_VALUE
. It is found in const_true_rtx
. If
STORE_FLAG_VALUE
is one, const_true_rtx
and
const1_rtx
will point to the same object. If
STORE_FLAG_VALUE
is -1, const_true_rtx
and
constm1_rtx
will point to the same object.
(const_double:m addr i0 i1 ...)
HOST_BITS_PER_WIDE_INT
bits but small enough to fit within twice that number of bits (GNU CC
does not provide a mechanism to represent even larger constants). In
the latter case, m will be VOIDmode
.
addr is used to contain the mem
expression that corresponds
to the location in memory that at which the constant can be found. If
it has not been allocated a memory location, but is on the chain of all
const_double
expressions in this compilation (maintained using an
undisplayed field), addr contains const0_rtx
. If it is not
on the chain, addr contains cc0_rtx
. addr is
customarily accessed with the macro CONST_DOUBLE_MEM
and the
chain field via CONST_DOUBLE_CHAIN
.
If m is VOIDmode
, the bits of the value are stored in
i0 and i1. i0 is customarily accessed with the macro
CONST_DOUBLE_LOW
and i1 with CONST_DOUBLE_HIGH
.
If the constant is floating point (regardless of its precision), then
the number of integers used to store the value depends on the size of
REAL_VALUE_TYPE
(see section Cross Compilation and Floating Point). The integers
represent a floating point number, but not precisely in the target
machine's or host machine's floating point format. To convert them to
the precise bit pattern used by the target machine, use the macro
REAL_VALUE_TO_TARGET_DOUBLE
and friends (see section Output of Data).
The macro CONST0_RTX (mode)
refers to an expression with
value 0 in mode mode. If mode mode is of mode class
MODE_INT
, it returns const0_rtx
. Otherwise, it returns a
CONST_DOUBLE
expression in mode mode. Similarly, the macro
CONST1_RTX (mode)
refers to an expression with value 1 in
mode mode and similarly for CONST2_RTX
.
(const_string str)
(symbol_ref:mode symbol)
symbol_ref
contains a mode, which is usually Pmode
.
Usually that is the only mode for which a symbol is directly valid.
(label_ref label)
code_label
that appears
in the instruction sequence to identify the place where the label
should go.
The reason for using a distinct expression type for code label
references is so that jump optimization can distinguish them.
(const:m exp)
const_int
, symbol_ref
and
label_ref
expressions) combined with plus
and
minus
. However, not all combinations are valid, since the
assembler cannot do arbitrary arithmetic on relocatable symbols.
m should be Pmode
.
(high:m exp)
symbol_ref
. The number of bits is machine-dependent and is
normally the number of bits specified in an instruction that initializes
the high order bits of a register. It is used with lo_sum
to
represent the typical two-instruction sequence used in RISC machines to
reference a global memory location.
m should be Pmode
.
Go to the first, previous, next, last section, table of contents.