This section describes the macros which let you control how various types of arguments are passed in registers or how they are arranged in the stack.
FUNCTION_ARG (cum, mode, type, named)
reg
RTX for the
hard register in which to pass the argument, or zero to pass the
argument on the stack.
For machines like the Vax and 68000, where normally all arguments are
pushed, zero suffices as a definition.
The value of the expression can also be a parallel
RTX. This is
used when an argument is passed in multiple locations. The mode of the
of the parallel
should be the mode of the entire argument. The
parallel
holds any number of expr_list
pairs; each one
describes where part of the argument is passed. In each expr_list
,
the first operand can be either a reg
RTX for the hard register
in which to pass this part of the argument, or zero to pass the argument
on the stack. If this operand is a reg
, then the mode indicates
how large this part of the argument is. The second operand of the
expr_list
is a const_int
which gives the offset in bytes
into the entire argument where this part starts.
The usual way to make the ANSI library `stdarg.h' work on a machine
where some arguments are usually passed in registers, is to cause
nameless arguments to be passed on the stack instead. This is done
by making FUNCTION_ARG
return 0 whenever named is 0.
You may use the macro MUST_PASS_IN_STACK (mode, type)
in the definition of this macro to determine if this argument is of a
type that must be passed in the stack. If REG_PARM_STACK_SPACE
is not defined and FUNCTION_ARG
returns non-zero for such an
argument, the compiler will abort. If REG_PARM_STACK_SPACE
is
defined, the argument will be computed in the stack and then loaded into
a register.
FUNCTION_INCOMING_ARG (cum, mode, type, named)
FUNCTION_ARG
computes the register in which
the caller passes the value, and FUNCTION_INCOMING_ARG
should
be defined in a similar fashion to tell the function being called
where the arguments will arrive.
If FUNCTION_INCOMING_ARG
is not defined, FUNCTION_ARG
serves both purposes.
FUNCTION_ARG_PARTIAL_NREGS (cum, mode, type, named)
double
or a
structure) crosses that boundary, its first few words must be passed
in registers and the rest must be pushed. This macro tells the
compiler when this occurs, and how many of the words should go in
registers.
FUNCTION_ARG
for these arguments should return the first
register to be used by the caller for this argument; likewise
FUNCTION_INCOMING_ARG
, for the called function.
FUNCTION_ARG_PASS_BY_REFERENCE (cum, mode, type, named)
REG_PARM_STACK_SPACE
is not defined, a suitable
definition of this macro might be
#define FUNCTION_ARG_PASS_BY_REFERENCE\ (CUM, MODE, TYPE, NAMED) \ MUST_PASS_IN_STACK (MODE, TYPE)
FUNCTION_ARG_CALLEE_COPIES (cum, mode, type, named)
CUMULATIVE_ARGS
FUNCTION_ARG
and other related values. For some target machines,
the type int
suffices and can hold the number of bytes of
argument so far.
There is no need to record in CUMULATIVE_ARGS
anything about the
arguments that have been passed on the stack. The compiler has other
variables to keep track of that. For target machines on which all
arguments are passed on the stack, there is no need to store anything in
CUMULATIVE_ARGS
; however, the data structure must exist and
should not be empty, so use int
.
INIT_CUMULATIVE_ARGS (cum, fntype, libname, indirect)
CUMULATIVE_ARGS
. The value of fntype is the tree node
for the data type of the function which will receive the args, or 0
if the args are to a compiler support library function. The value of
indirect is nonzero when processing an indirect call, for example
a call through a function pointer. The value of indirect is zero
for a call to an explicitly named function, a library function call, or when
INIT_CUMULATIVE_ARGS
is used to find arguments for the function
being compiled.
When processing a call to a compiler support library function,
libname identifies which one. It is a symbol_ref
rtx which
contains the name of the function, as a string. libname is 0 when
an ordinary C function call is being processed. Thus, each time this
macro is called, either libname or fntype is nonzero, but
never both of them at once.
INIT_CUMULATIVE_INCOMING_ARGS (cum, fntype, libname)
INIT_CUMULATIVE_ARGS
but overrides it for the purposes of
finding the arguments for the function being compiled. If this macro is
undefined, INIT_CUMULATIVE_ARGS
is used instead.
The value passed for libname is always 0, since library routines
with special calling conventions are never compiled with GNU CC. The
argument libname exists for symmetry with
INIT_CUMULATIVE_ARGS
.
FUNCTION_ARG_ADVANCE (cum, mode, type, named)
FUNCTION_ARG
, etc.
This macro need not do anything if the argument in question was passed
on the stack. The compiler knows how to track the amount of stack space
used for arguments without any special help.
FUNCTION_ARG_PADDING (mode, type)
enum direction
: either upward
to pad above the argument,
downward
to pad below, or none
to inhibit padding.
The amount of padding is always just enough to reach the next
multiple of FUNCTION_ARG_BOUNDARY
; this macro does not control
it.
This macro has a default definition which is right for most systems.
For little-endian machines, the default is to pad upward. For
big-endian machines, the default is to pad downward for an argument of
constant size shorter than an int
, and upward otherwise.
FUNCTION_ARG_BOUNDARY (mode, type)
PARM_BOUNDARY
is used for all arguments.
FUNCTION_ARG_REGNO_P (regno)
Go to the first, previous, next, last section, table of contents.