
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Cfasm ColdFire Assembler 
rev. 2.03 

 



cfasm 

2 

Austex Software

1. GENERAL 
 
The ColdFire Assembler, cfasm, is a freeware assembler for ColdFire processors. 
Instruction set supported: 52xx, 5307 and 5407. 
 
Command line arguments specify the filenames to assemble.  Only one object file is 
output even though several files can be specified and assembled together. The 
assembler can output in Motorola SREC, raw binary or NuOS object code formats. 
 
The object file is placed in the file `<inputfilename>.o' where 'inputfilename' was the 
name of the actual assembler file (missing any extensions). The listing and error 
messages are written to the standard output. 
 
The listing file contains the address and bytes assembled for each line of input 
followed by the original input line (unchanged, but moved over to the right some).  If 
an input line causes more than 6 bytes to be output (e.g. a long dc.b directive), 
additional bytes are listed on succeeding lines with no address preceding them. 
 
Equates cause the value of the expression to replace the address field in the listing.  
Equates that have forward references cause phasing Errors in Pass 2. 
 
It is unwise to have more than one assembly in progress per directory since the 
object file would be the same for all assemblies running. 
 



cfasm 

3 

Austex Software

1.1 EXPRESSIONS 
 
Expressions may consist of symbols, constants or the character '*' (denoting the 
current value of the program counter) joined together by one of the operators: +-
*/%&|^<<>>~.  
 
  + add 
  -        subtract 
  *        multiply 
  /        divide 
  %        modulo (remainder after division) 
  &        bitwise and 
  |        bitwise or 
  ^        bitwise exclusive-or 
  << bitwise left shift 
  >> bitwise right shift 
  ~ ones complement 
 
Expressions are evaluated left to right and there is no provision for parenthesized 
expressions.  Arithmetic is carried out in signed 32-bit twos-complement integer 
precision. 
 
 



cfasm 

4 

Austex Software

1.2 CONSTANTS 
 
Constants are constructed as follows: 
 
  0x followed by hexadecimal constant 
  $        followed by hexadecimal constant 
  @        followed by octal constant 
  %    followed by binary constant 
  digit  decimal or floating-point constant 
 
String constants are specified by enclosing the string in single or double quotes.  
Strings are recognized by the dc (define constants) and equ (equate) pseudo-ops. 
For string equates, the value returned depends on the length of the string.  Since a 
label is a 32-bit reference (four bytes), a string equate will convert up to the last four 
characters of a string. As an example:- 
 
 filesystem equ "nufs"  ; filesystem = 0x6e756673 
 test  equ "hello0000" ; test = 0x30303030 
 alpha_a equ "a"  ; alpha_a = 0x00000061 
 
 
Floating-point numbers can be used with equ (equates) and immediate (#) 
addressing modes in addition to dc (define constants). Although not all ColdFire 
processors contain floating-point hardware, values can be manipulated in software. 
As an example:- 
 
 pi_equ equ.s 3.1415926 
 pi_single dc.s 3.1415926 
 pi_double dc.d 3.1415926 
 
  move.l #3.1415926,d0  ; single precision 
  move.l #pi_equ,d0   ; single precision 
  fmove.s (pi_single,pc),fp0 ; single precision 
  fmove.d (pi_double,pc),fp1 ; double precision 
 



cfasm 

5 

Austex Software

1.3 ERRORS 
 
Error diagnostics are placed in the listing file just before the line containing the error.  
Format of the error line is: 
 
  Line_number: Module: Description of error 
   or 
  Line_number: Warning --- Description of error 
 
Errors of the first type in pass one cause cancellation of pass two.  Warnings do not 
cause cancellation of pass two but should cause you to wonder where they came 
from. 
 
Error messages are meant to be self-explanatory. If more than one file is being 
assembled, the file name precedes the error: 
 
  File_name,Line_number: Module: Description of error 
 
Finally, some errors are classed as fatal and cause an immediate termination of the 
assembly.  Generally these errors occur when a temporary file cannot be created or 
is lost during the assembly. 
 
Notes: 
Phasing error 
This error usually occurs because of a difference between the program counter from 
assembly phase(pass) 1 and phase 2. 
 
As a general rule, try to make all equate definitions before the code section. 
 
 



cfasm 

6 

Austex Software

1.4 PSEUDO OPS 
 
 All pseudo-ops are treated as mnemonics, and must be preceded by at least 

one white space character in the assembly file. Some require a symbol 
preceeding the operation on the same line. 

 
 org  <value> Origin of code in memory (also checks for word alignment). 
 
 equ (<extension>)  <expression> Equates. An expression is evaluated and assigned to a symbol. The 

only extension allowed is ".s" for single precision floating-point 
equates. No extension defaults to longword. String constants are 
allowed. 

 
 dc <extension> <value>, ...              Define constant(s). Extensions may be one of the following:- 
  .b = byte (1 byte) 
  .w = word (2 bytes) 
  .l = longword (4 bytes) 
  .s = single precision floating-point (4 bytes) 
  .d = double precision floating-point (8 bytes) 
 
 dr <extension> <value>, ... Define relative(s) (usually used for library offset tables). Extensions 

can be .b, .w or .l types. 
 
 ds <extension> <value>(,<data>) Define storage. Extensions can be .b, .w or .l types. Total storage 

size (in bytes) equals extension size multiplied by value. The 
storage area will be filled with zero, or the data value if supplied. 

 
 opt  <options> Options. (see section 1.4.2). 
 
 cpu <processor> ColdFire processor selection(5102, 5202, 5204, 5206, 5206e, 5249, 

5272, 5307, 5407, any). Certain restrictions are enforced when a 
processor is selected. Defaults to 5206. A value of "any" will select 
all processor capabilities. 

 
 section  <type> Set to either code, data or bss. 
 
 idnt <name>,<version>,<date> Identification strings. Each string will cause the generation of 

individual NuOS blocks of type BLOCK_NAME, BLOCK_VERSION 
and BLOCK_DATE (only if object code option enabled). 

 
 xref  <symbol> External symbol reference. The symbol exists in another file. 
 
 xdef <symbol> External symbol definition. This symbol can be referenced from 

another file. 
 
 include <file>       Filename of include file to be processed. 
 
 incdir <directory> Include directory. Include files are first searched in the current 

directory, then in the incdir directory, and finally the environment 
variable cfasmincl (if it exists). 

 
 incbin <file> Include a binary file into the assembly. This file is not assembled, 

but added as if it were raw data. Useful for tables, graphic images etc...



cfasm 

7 

Austex Software

 
 lvorst Reset library vector offset counter. An internal counter value is set 

to -6 (which is the code size of "jmp  <longaddress>" used by library 
vectors). 

 
 lvo <symbol> Library vector offset entry. A symbol is created by prefixing the 

string "_lvo" to the symbol name passed and an internal counter 
value assigned to it. This counter value is then decremented by 6 
(which is the code size of "jmp  <longaddress>" used by library 
vectors). 

 
 call <symbol> Call a library function using _lvo values, register a6 points to a 

library base. The code generated is:- 
  
   jsr (_lvo<symbol>,a6) 
 
 callres <symbol>,<base> Call a library function using _lvo values from a base offset, register 

a6 points to a library base. The code generated is:- 
  
   move.l a6,-(a7) 
   move.l (<base>,a6),a6 
   jsr (_lvo<symbol>,a6) 
   move.l (a7)+,a6 
 
 callusr <symbol>,<base> Call a library function using _lvo values from a base offset, register 

a6 points to a library base. The code generated is:- 
  
   move.l a6,-(a7) 
   move.l (<base>,a4),a6 
   jsr (_lvo<symbol>,a6) 
   move.l (a7)+,a6 
   
 push {reglist}   Performs register pushes to the stack. If only one register is passed, 

then this operation performs a simple move.l {register}, -(a7). 
 
   lea.l (-size,a7),a7 
   movem.l {reglist},(a7) 
 
   (where size is the number of registers*4) 
 
 pull {reglist} Performs register pulls from the stack. If only one register is passed, 

then this operation performs a simple move.l (a7)+,{register} 
 
   movem.l (a7),{reglist} 
   lea.l (size,a7),a7 
 
   (where size is the number of registers*4) 



cfasm 

8 

Austex Software

 structure <symbol>,<value> Creates a new symbol set to value. An internal variable is also set 
to the value. 

 stkstruct <symbol>,<value>   Creates a new symbol set to value. An internal variable is also set 
to the value. The stack structure defines all further components to 
negative values. 

 struct <symbol>,<value>  Creates a new symbol set to current internal value and the value is 
then added to the internal. 

 byte <symbol> Creates a new symbol set to current internal value and increments 
the internal value by one except if defined as a stack structure in 
which case the internal value is decremented first by one and then 
set to the symbol. 

 word <symbol> Creates a new symbol set to current internal value and increments 
the internal value by two except if defined as a stack structure in 
which case the internal value is decremented first by two and then 
set to the symbol. 

 long <symbol> Creates a new symbol set to current internal value and increments 
the internal value by four except if defined as a stack structure in 
which case the internal value is decremented first by four and then 
set to the symbol. 

 label <symbol> The symbol is set to the current internal value. 
 
 aptr <symbol> Absolute pointer, same as long. 
 rptr <symbol> Relative pointer, same as long. 
 ulong <symbol> Unsigned long, same as long. 
 fixed <symbol> Fixed point value, same as long. 
 float <symbol> Floating point value, same as long. 
 
 short <symbol> Short integer, same as word. 
 ushort <symbol> Unsigned short, same as word. 
 uword <symbol> Unsigned word, same as word. 
   
 char <symbol> Character, same as byte. 
 ubyte <symbol> Unsigned byte, same as byte. 
 
 bitdef <prefix>,<symbol>,<bit> Creates two symbols based on the prefix. The first is a bit-symbol 

and the second is a fieldmask-symbol. The symbols are created by 
taking the prefix, concatenating a "b" (for bit) and a "f" (for field 
mask) and then adding the passed symbol name. The bit-symbol 
can be used for bit-wise operations (btst, bset, bclr etc...) and the 
fieldmask-symbol can be used with logical operations (and, or etc...) 
The bit-symbol value is equal to the passed <bit> value and the 
fieldmask-symbol is equal to 1 left-shifted by the value <bit>. 
   
Example 1 bitdef pa,status,2 
     
 produces the equivalent of two defined symbols:- 
 pab_status equ 2 ; = bit 
 paf_status equ 4 ; = 1<<bit 
   
Example 2 bitdef pre,data,7 
 
 produces the equivalent of two defined symbols:- 
 preb_data equ 7 ; = bit 
 pref_data equ 128 ; = 1<<bit 



cfasm 

9 

Austex Software

 
 classtagbegin (<symbol>) Start of classtag arrayitems. A symbol called ct_<symbol> will be 

created and set to the number of items in the array. This will occur 
during the second assembler pass, since further items will not be 
known during pass one. A longword is emitted containing the 
number of items in the array, unless the symbol is not supplied. In 
this case, the classtag starts at zero. This can be used in include 
files to only create reference symbols. 

 
 classtag <symbol>, <value> Use this to set each tag value. Each item in the array is set to the 

value supplied. A symbol called ct_<symbol> is created and set to 
the index within the array. If this is the first item, it will be set to 
zero.  

 
  A longword containing <value> will be emitted only if a symbol was 

suppied in classtagbegin. The programmer can use the ct_ 
symbols for passing to routines that handle classtag arrays. Each 
symbol value is incremented by four (4). 

 
 classtagend (<symbol>) This MUST be set to the same symbol as classtagbegin. 
 
 boundary This can be used to place a special segment between the boundary 

of code and data. Since the ColdFire processor prefetches 
instructions (when the cache is enabled), it may attempt to access 
locations that could cause an error under certain circumstances. To 
solve this, the boundary operation will place the following segment 
between code and data:- 

 
.label  bra.b .label 
  illegal 
  illegal 
   illegal 
  illegal 
  illegal 
  illegal 
 
In addition to this segment, the program counter will be longword 
aligned. 
 

 end         The assembly ends when there is no more input. 
 
 pag[e]      Sends form feed to output.



cfasm 

10 

Austex Software

1.4 PSEUDO OPS (continued) 
 
 1.4.1 CONDITIONAL 
   

endc  Terminate a conditional assembly block. 
else  Assemble code based on previous condition statement. 
ifd <symbol>  If symbol defined, then assemble the next block of code until an 

'endc' pseudo-op. 
ifnd <symbol>  If symbol not defined, then assemble the next block of code until an 

'endc' pseudo-op. 
ifeq <expr>  If expression evalutes to zero, then assemble next code block. 
ifne <expr>  If expression evalutes to non-zero, then assemble next code block. 
ifge <expr>  If expression evalutes to >=0, then assemble next code block. 
ifgt <expr>  If expression evalutes to >0, then assemble next code block. 
ifle <expr>  If expression evalutes to <=0, then assemble next code block. 
iflt <expr>  If expression evalutes to <0, then assemble next code block. 

 
1.4.2 OPT  (options) 
 
These options follow an opt pseudo-op. For example:-  opt list. 
 
list     Turn on output listing 
nolist   Turn off output listing (default) 
object Produce object code output (NuOS format) 
binary Produce binary output (overridden by object flag, raw format) 
rtxnop Adds NOP instruction after RTS or RTE instructions 
optimise=<?> Enables/Disables various optimisations. 
 

optimise=all Enables all optimisations (default). 
 
optimise=none Disables all optimisations. 
 
optimise=moveq Attempts to convert move.l #<data>,Dx 

values to moveq.l #<data>,Dx  (values -128 
to 127). 

 
optimise=addq Attempts to convert add.l #<data>,<ea>x 

values to addq.l #<data>,<ea>x (values 1 
to 8). 

  
optimise=subq Attempts to convert sub.l #<data>,<ea>x 

values to subq.l #<data>,<ea>x  (values 1 
to 8). 

 
optimise=branch Attempts to improve backward branches 

from word to byte offsets. 
 
optimise=index Attempts to convert (0,ax) to (ax). 
 
optimise=nomoveq Disables moveq optimsation. 
optimise=noaddq Disables addq optimsation. 
optimise=nosubq Disables subq optimsation. 
optimise=nobranch Disables branch optimsation. 
optimise=noindex Disables index optimsation. 
 



cfasm 

11 

Austex Software

 
unsizemode Allows cpu specific unsized opcode mode. By default, unsized 

opcodes will produce code that is compatible with the V2 core. For 
example, an unsized compare instruction will use longword sizing to 
remain compatible with V2. Word sizing on unsized opcodes will 
therefore be used wherever possible when unsizemode is enabled. 
For a V4 core and unsizemode, an unsized compare instruction will 
be treated as word sized. Unsized move instructions default to word 
sizing on all cores. 

 
  

 Old pseudo-ops (recognized, but ignored):- 
 
 

ttl       use `pr' to get headings and page numbers 
spc       use blank line instead. 
nam[e]   

 
 
 
 
 



cfasm 

12 

Austex Software

 1.4.3 CPU (processor selection) 
 
 

CPU Core Multiply 
Accumulate 

Hardware
Divide 

ISA 
Revision 

Memory 
Management 

Unit 

Floating 
Point 
Unit 

5102 1 - - A - - 
5202 2 - - A - - 
5204 2 - - A - - 
5206 2 - - A - - 

5206e 2 mac yes A - - 
5249 2 emac yes A - - 
5272 2 mac yes A - - 
5307 3 mac yes A - - 
5407 4 mac yes B - - 
any 4e emac yes B yes yes 

 
Core is the version number of the internal processor core. 
MAC instructions are available on processors with a multiply accumulate unit. 
DIV instructions are available on processors with hardware divide capability.  
ISA Revision is the Instruction Set Addition revision. The 5407 has additional instructions. 
Floating-point instructions are available on processors with a floating-point unit. 



cfasm 

13 

Austex Software

2. DETAILS 
 
        Symbol: 
 A string of  characters  with  a  non-initial  digit.  The string of 

characters may be from the set: 
 
      [a-z][A-Z]_[0-9]$ 
 
 ( _ counts as a non-digit).  The `$' counts as a digit to avoid confusion 

with hexadecimal constants.  All characters of a symbol are significant, 
with upper and lower case characters being distinct.  The maximum 
number of characters in a symbol is currently set at ninety (90). 

 
 The symbol table can grow until the assembler runs out of               

memory. 
 
 
 Label: 
 A symbol starting in the first column is a  label  and  may optionally  be  

ended  with a ':'.  A label may appear on a line by itself and is 
interpreted as:- 

 
   Label   EQU     * 
 
 Local Label: 
 A local label is defined as any label ending in a '$'. This label is special 

in that it belongs only between two normal labels. For example:-  
          
          Start: 
           nop 
          10$ bra 10$ 
          Mid: 
           nop 
          10$ bra 10$ 
   EndCode: 
 
 Mnemonic: 
 A symbol preceded by at least one white space  character. Upper  case 

characters in this field are converted to lower case before being 
checked as a legal mnemonic.  Thus `nop', `NOP' and even `NoP' are 
recognized as the same mnemonic. 



cfasm 

14 

Austex Software

Operand: 
 Follows mnemonic, separated by at  least  one  white space character.   

The   contents   of   the   operand  field  is interpreted by each 
instruction. 

 
 White space: 
 A blank or a tab character. 
 
 Comment: 
 Any text after all operands for  a  given  mnemonic  have been  

processed or, a line beginning with semicolon, asterix or hash ( ; * # ) 
characters up to the end of line or, an empty line. 

 
 Continuations: 
 If a line ends with a backslash ( \ ) then  the  next line  is  fetched  and  

added to the end of the first line. This continues until a line is seen 
which doesn't end in backslash or until the character buffer is full (256 
characters). 

  
 Strings: 

Strings may be enclosed by either the double or single quote ( " ' ) 
characters. For example:- 
 
mymessage dc.b "It's a great day",0 
 
filesystem equ "nufs" 
 
Note: The end of string should be enclosed with the same quote 
character that was used to define the string. 
 



cfasm 

15 

Austex Software

2.1 BRANCHES 
 
 Branches can contain byte,word or long (version 4 core or greater) offsets. 

Word offset is the default for unspecified branches. 
  
 bra 10$ ; Defaults to word offset 
 bra.b 10$ ; Byte offset 
 bra.w 10$ ; Word offset 
 bra.l 10$ ; Longword offset (version 4 or greater core only) 
 
 Branch optimisation can be implemented for backward branches, so that a 

word offset could be reduced to a byte offset if possible (see section 1.4.2). 



cfasm 

16 

Austex Software

3. COMMAND LINE OPTIONS 
 
 -b  Produce binary output. 
 -d  Turn off '.' local labels (use with cfcc). 
 -f  Forward branches default to byte offset. 
 -l  Turn listing on. 
 -n  Disable incbin auto-alignment. 
 -o  Produce object code output. 
 -q  Quiet flag. Final error count or success suppressed. 
 -r  Turn on RTS/RTE post NOP generation. 
 -u  Allow cpu specific unsized opcode mode. (see section 1.4.2) 
 -x <val>  Debug Options (see section 4). 
 
 
4. DEBUG OPTIONS  
 
 The debug option (-x) uses a weighted number to turn on one or more print 

statements: 
 
  1        Parser. 
  2       Template matches. 
  4        Expression Evaluation. 
  8        Symbol table lookup/install. 
         16       Forward references. 
         32        Indexed Indirect information. 
        64        Dump all important tables. 
 
 e.g. -x10 displays template match operation and symbol table info. 
 
 
5. FILES 
 
 <infile>.o File output (SREC, object or binary). 
 stdout  Listing and errors. 
  
 cfasmincl Environment variable to enable a global include path. 
 
 
6. IMPLEMENTATION NOTES 
 
 This is a classic two-pass assembler.  Pass one establishes the  symbol table 

and pass two generates the code. 



cfasm 

17 

Austex Software

 
7. Known bugs 
 
 This assembler is still under development. 
 
 1. The assembler may crash if compiling non-ascii files accidentally. 
 



cfasm 

18 

Austex Software

8. Changes 
 

2.03 · Fixed opcode extension bug with v2.02 optimisation. Added mode to allow cpu 
specific unsized-opcode sizing. Optimise functions can be individually disabled. 

2.02 · Added quiet flag. Fixed bug with addi and subi undefined size code generation. 
These opcodes now support optimisation. 

2.01 · Fixed floating-point exponent handling. 
2.00 · Added floating-point and MMU support. Modified various pseudo-op code. Fixed 

bugs with comments after some pseudo-ops. String equates added. Define 
storage enhanced. Data section alignment fixed. ColdFire 5249 added. 

1.92 · Modified conditional assembly handling. 
1.90 · Bad branch destinations no longer produce phasing errors. Some modifications to 

error messages.  
1.88 · Modification of allowed type combinations has fixed some phasing errors and 

improved code optimisation. 
1.84 · Fixed bug with macl "upper" generation. 
1.82 · Fixed minor end-of-file conditions. This only applies to source files that terminated 

in a non line-feed character. 
1.80 · Error on comments after labels now fixed. 
1.78 · Added callres and callusr pseudo-ops for calling resource functions from within 

resources or user code. 
1.74 · Classtag values in conditional blocks now displayed in listing. 
1.72 · Fixed bug with conditional assembly and forward references. Equates that don't 

evaluate in pass one now produce an error. 
1.70 · Added new opcode handling for MAC V4e core instructions. Finally fixed the 

annoying last line of listing sometimes containing previous characters. 
1.60 · Forward references within conditional blocks now produce an error. Fixed error 

filename reporting mechanism. 
1.52 · Fixed generation of mov3q opcode for ColdFire 5407 processor. 
1.50 · Added index addressing optimisation. New boundary pseudo-op added. 
1.40 · Implemented classtag system. 
1.38 · Better addq/subq optimisation code. Unrecognised optimise flag now gives a 

warning. 
1.36 · Fixed branch optimisation. 
1.34 · Increased the parsed line items from 16 to 32. 
1.32 · Added environment variable cfasmincl, so that include files can be easily located. 
1.30 · Enhancements to XDEF handling. 
1.28 · Fixed bug with end-of-file termination regarding single TAB characters on a line by 

itself at the end of an assembly file. 
1.26 · TPF instruction added (same as TRAPF inst). 
 · CPUSHL syntax modified.  
1.24 · Fixed bit manipulation instructions. 
 · An error is now reported when an xdef could not be found. 
 · Added cpu option. 
 · Added " character for string enclosure. 
 · Enhanced code generation (optimisations). 

 
 
 Original Code - Copyright (C) Motorola, used with permission. 
 Copyright (C) 1998-2002 Austex Software 
 All rights reserved. 
 
 www.austexsoftware.com 


